Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T11:57:19.508Z Has data issue: false hasContentIssue false

Dietary-Induced Thermogenesis and feed Evaluation in Ruminants

Published online by Cambridge University Press:  28 February 2007

E. R. Ørskov
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
N. A. MacLeod
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Thermogenesis: mechanisms in large mammals’
Copyright
Copyright © The Nutrition Society 1990

References

Adam, I., Young, B. A., Nicol, A. M. & Degen, A. A. (1984). Energy cost of eating in cattle given diets of different form. Animal Production 38, 5356.Google Scholar
Agricultural Research Council (1965). The Nutrient Requirements of Farm Livestock. No. 2, Ruminants. London: H.M. Stationery Office.Google Scholar
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Common wealth Agricultural Bureaux.Google Scholar
Armstrong, D. G. & Blaxter, K. L. (1957 a). The heat increment of steam volatile fatty acids in fasting sheep. British Journal of Nutrition 11, 247272.CrossRefGoogle ScholarPubMed
Armstrong, D. G. & Blaxter, K. L. (1957 b). The utilization of acetic, propionic and butyric acids by fattening sheep. British Journal of Nutrition 11, 413425.CrossRefGoogle ScholarPubMed
Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1957). The heat increment of mixtures of steam volatile fatty acids in fasting sheep. British Journal of Nutrition 11, 392408.CrossRefGoogle ScholarPubMed
Armstrong, D. G., Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1958). The utilization of the energy of two mixtures of steam volatile fatty acids by fattening sheep. British Journal of Nutrition 12, 177188.CrossRefGoogle ScholarPubMed
Baker, F. (1942). Microbial factors in the digestive assimilation of starch and cellulose in herbivora. Nature 150, 479.CrossRefGoogle Scholar
Barcroft, J., McAnally, R. A. & Phillipson, A. T. (1944). Absorption of acetic, propionic and butyric acids from the alimentary canal. Biochemical Journal 38, iii.Google Scholar
Bassett, J. M. (1974). Diurnal patterns of plasma insulin, growth hormone, corticosteroid and metabolite concentrations in fed and fasted sheep. Australian Journal of Biological Science 27, 167181.CrossRefGoogle ScholarPubMed
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Bull, L. S., Reid, J. T. & Johnson, D. R. (1970). Energetics of sheep concerned with the utilization of acetic acid. Journal of Nutrition 100, 262276.CrossRefGoogle ScholarPubMed
Burrin, D. G., Ferrell, C. L. & Britton, R. A. (1989). Effect of feed intake of lambs on visceral organ growth and metabolism. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Production Publication no. 43, pp. 103106 [van der Honing, Y. and Close, W. H., editors]. Wageningen, The Netherlands: Pudoc.Google Scholar
Crabtree, B., Barr, S. A.. Anderson, S. E. & MacRae, J. C. (1987). Measurement of the rate of substrate cycling between acetate and acetyl-CoA in sheep muscle in vivo: effects of infusion of acetate. Biochemical Journal 243, 821827.CrossRefGoogle ScholarPubMed
Eskeland, B., Pfander, W. H. & Preston, R. L. (1973). Utilization of volatile fatty acids and glucose for protein deposition in lambs. British Journal of Nutrition 29, 347355.CrossRefGoogle ScholarPubMed
Flatt, W. P., Moe, P. W., Moore, L. A., Hooven, N. W., Lehman, R. P., Ørskov, E. R. & Hemken, R. W. (1967). Experimental design, ration composition, digestibility data and animal performance during energy balance trials. In Proceedings 4th Conference on Energy Metabolism. European Association of Animal Production Publication no. 12, pp. 221234 [Blaxter, K. L., Kielaowski, J. and Thorbek, C. editors]. Newcastle upon Tyne: Oriel Press Ltd.Google Scholar
Gadeken, D., Breves, G. & Oslage, H. J. (1989). Efficiency of energy utilization of intracaecally infused volatile fatty acids in pigs. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Production Publication no. 43, pp. 115118 [van der Honing, Y. and Close, W. H., editors]. Wageningen, The Netherlands: Pudoc.Google Scholar
Gill, M., Cammell, S. B., Haines, M. J., France, J. & Dhamoa, M. S. (1989). Energy balance in cattle offered a forage diet at sub-maintenance levels. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Production Publication no. 43, pp. 300303 [van der Honing, Y. and Close, W. H. editors]. Wageningen, The Netherlands: Pudoc.Google Scholar
Graham, N. McC. (1986). Energetic efficiency and amino acid supply in ruminants. British Journal of Nutrition 56, 315.Google ScholarPubMed
Holmes, C. W., MacLean, N. A. & Lockyer, K. J. (1978). Changes in the rate of heat production of calves during grazing and eating. New Zealand Journal of Agricultural Research 21, 107112.CrossRefGoogle Scholar
Hovell, F. D. DeB., Greenhalgh, J. F. D. & Wainman, F. G. (1976). The utilization of diets containing acetate salts by growing lambs as measured by comparative slaughter and respiration calorimetry, together with rumen fermentation. Brirish Journal of Nutrition 35, 343363.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Jenkins, T. C. & Thonney, M. L. (1988). Effect of propionate level in a volatile fatty acid salt mixture fed to lambs on weight gain, body composition and plasma metabolites. Journal of Animal Science 66, 10281035.CrossRefGoogle Scholar
Kellner, O. (1926). The Scientific Feeding of Animals. London: Duckworth.Google Scholar
Koong, L. J., Ferrell, C. L. & Nienaber, J. A. (1985). Assessment of interrelationships among levels of intake and production, organ size and fasting heat production in growing animals. Journal of Nutrition 115, 13831390.CrossRefGoogle ScholarPubMed
KuVera, J. C., MacLeod, N. A. & Ørskov, E. R. (1989). Energy exchanges of cattle nourished by intragastric infusion of nutrients. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Production Publication no. 43, pp. 271274 [van der Honing, Y. and Close, W. H., editors]. Wageningen, The Netherlands: Pudoc.Google Scholar
KuVera, J. C., Ørskov, E. R., Hovell, F. D. DeB. & MacLeod, N. A. (1987). Effect of small amounts of glucose and different volatile fatty acid mixtures on fasting N excretion in lambs. 5th International Symposium on Protein Metabolism and Nutrition. European Association of Animal Production Publication no. 35, p. 94 [Poppe, S., editor]. Rostock, DDR: Wissenschaftliche Zeitschrift der Wilhelm-Pieck Universitat Rostock.Google Scholar
McClymont, G. L. (1952). Specific dynamic actions of acetic acid and heat increment of feeding in ruminants. Australian Journal of Scientific Research 5B, 374.Google Scholar
MacLeod, M. G., Jewitt, T. S. & Anderson, J. E. M. (1989). Responses of energy expenditure and retention to wide-ranging dietary concentrations and voluntary intakes of energy and protein in growing domestic fowl. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Production Publication no. 43, pp. 195199. Wageningen, The Netherlands: Pudoc.Google Scholar
MacLeod, N. A., Corrigall, W., Stirton, R. A. & Ørskov, E. R. (1982). Intragastric infusion of nutrients in cattle. British Journal of Nutrition 47, 547552.CrossRefGoogle ScholarPubMed
MacLeod, N. A. & Ørskov, E. R. (1984). Absorption and utilization of volatile fatty acids in ruminants. Canadian Journal of Animal Science 64, Suppl., 354355.CrossRefGoogle Scholar
Marston, H. R. (1948). Energy transactions in the sheep. 1. The basal heat production and heat increment. Australian Journal of Scientific Research 1B, 95123.Google Scholar
Morton, J. C. (1855). A Cyclopaedia of Agriculture. London: Blackie & Son.Google Scholar
Mulier, H. L., Kirchgeszner, M. & Roth, F. X. (1989). Energy utilization of intracaecally infused carbohydrates and casein in sows. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Producrtion Publication no. 43. pp. 123126 [van der Honing, Y. and Close, W. H. editors]. Wageningen, The Netherlands: Pudoc.Google Scholar
Ørskov, E. R. (1982). Effect of volatile fatty acid composition and protein on energy utilization and milk composition on cows sustained by intragastric nutrition. In Energy Metabolism of Farm Animals. pp. 123126 [Ekern, A. and Sundstøl, F., editors]. Aas: Agricultural University of Norway.Google Scholar
Ørskov, E. R. & Allen, D. M. (1966 a). Utilization of salts of volatile fatty acids by growing sheep. 1. Acetate, propionate and butyrate as sources of energy for young growing lambs. British Journal of Nutrition 20, 295305.CrossRefGoogle Scholar
Ørskov, E. R. & Allen, D. M. (1966 b). Utilization of salts of volatile fatty acids by growing sheep. 2. Effect of stage of maturity and hormone implantation on the utilization of volatile fatty acid salts as sources of energy for growth and fattening. British Journal of Nutrition 20, 509517.CrossRefGoogle Scholar
Ørskov, E. R. & Allen, D. M. (1966 c). Utilization of salts of volatile fatty acids by growing sheep. 4. Effects of type of rumen fermentation of the basal diet on the utilization of salts of volatile fatty acids for nitrogen retention and body gains. British Journal of Nutrition 20, 519532.CrossRefGoogle Scholar
Ørskov, E. R., Flatt, W. P. & Moe, P. W. (1968). A fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. Journal of Dairy Science 51, 14291435.CrossRefGoogle Scholar
Ørskov, E. R., Flatt, W. P., Moe, P. W., Munson, A. W., Henken, R. W. & Katz, I. (1969). The influence of ruminal infusion of volatile fatty acids on milk yield and composition and energy utilization by lactating cows. British Journal of Nutrition 23, 443453.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & Gordon, J. G. (1974). Effect of processing of cereals on rumen fermentation, digestibility, rumination time and firmness of subcutaneous fat. British Journal of Nutrition 32, 5969.CrossRefGoogle Scholar
Ørskov, E. R., Grubb, D. A., Wenham, W. & Corrigall, W. (1979). The sustenance of growing and fattening ruminants by intragastric infusion of volatile fatty acids and protein. British Journal of Nutrition 41, 553558.CrossRefGoogle Scholar
Ørskov, E. R., Hovell, F. D. DeB. & Allen, D. M. (1966). Utilization of salts of volatile fatty acids by growing sheep. 2. Effect of stage of maturity and hormone implantation on the utilization of volatile fatty acid salts as sources of energy for growth and fattening. British Journal of Nutrition 20, 307315.Google Scholar
Ørskov, E. R. & Oltjen, R. R. (1967). Influence of carbohydrate and nitrogen sources on the rumen volatile fatty acids and ethanol of cattle fed purified diets. Journal of Nutrition 93, 222228.CrossRefGoogle Scholar
Ortigues, I., Smith, T., Oldham, J. D. & Gill, M. (1989). The effects of fishmeal on growth and calorimetric efficiency in heifers offered straw-based diets. In Proceedings of the 11th Symposium on Energy Metabolism. European Association of Animal Production Publication no. 43. pp. 6568 [van der Honing, Y. and Close, W. H., editors]. Wageningen, The Netherlands: Pudoc.Google Scholar
Tyler, C. (1975). Albrecht Thaer's hay equivalents: fact or fiction? Nutrition Abstracts and Review 45, 111.Google Scholar
Tyrrell, H. F., Reynolds, P. J. & Moe, P. W. (1979). Effect of diet on patial efficicncy of acetate use for body tissue synthesis by mature cattle. Journal of Animal Science 48, 598606.CrossRefGoogle Scholar
Webster, A. J. F., Brockway, J. M. & Smith, J. S. (1974). Prediction of the energy requirements for growth in beef cattle. 1. The irrelevance of fasting metabolism. Animal Production 19, 127140.Google Scholar