Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T09:47:39.576Z Has data issue: false hasContentIssue false

Dietary regulation of intestinal nutrient carriers

Published online by Cambridge University Press:  28 February 2007

Barry H. Hirst
Affiliation:
Department of Physiological Sciences, University of Newcastle upon Tyne Medical School, Newcastle upon Tyne NE2 4HH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘The digestive tract in nutritional adaptation’
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Bannai, S., Christensen, H. N., Vadgama, J. V., Ellory, J. C., Englesberg, E., Guidotti, G. C., Gazzola, G. C., Kilberg, M. S., Lajthe, A., Sacktor, B., Sepúlveda, F. V., Young, J. D., Yudilevich, D. & Mann, G. (1984). Amino acid transport systems. Nature 311, 308.Google ScholarPubMed
Barker, G. A. & Ellory, J. C. (1990). The identification of neutral amino acid transport systems. Experimental Physiology 75, 326.CrossRefGoogle ScholarPubMed
Bode, Ch., Eisenhardt, J. M., Haberich, F. J. & Bode, J. Ch. (1981). Influence of feeding fructose on fructose and glucose absorption in rat jejunum and ileum. Research in Experimental Medicine 179, 163168.Google Scholar
Brot-Laroche, E., Dao, M. T., Alcalde, A. I., Delhomme, B., Triadou, N. & Alvarado, F. (1988). Independent modulation by food supply of two distinct sodium-activated D-glucose transport systems in the guinea pig intestinal brush border membrane. Proceedings of National Academy of Sciences, U.S.A. 85, 63706373.CrossRefGoogle Scholar
Buddington, R. K. & Diamond, J. M. (1989). Ontogenic development of intestinal nutrient transporters. Annual Review of Physiology 51, 601619.Google Scholar
Cheeseman, C. I. & Harley, B. (1991). Adaptation of glucose transport across rat enterocyte basolateral membrane in response to altered dietary carbohydrate intake. Journal of Physiology 437, 563575.Google Scholar
Csaky, T. Z. & Fischer, E. (1984). Effects of ketohexosemia on the ketohexose transport in the small intestine of rats. Biochimica et Biophysica Acta 772, 259263.Google Scholar
Davidson, N. O., Hausman, A. M. L., Ifkovits, C. A., Buse, J. B., Gould, G. W., Burant, C. F. & Bell, G. I. (1992). Human intestinal glucose transporter expression and localization of GLUT5. American Journal of Physiology 262, C795C800.CrossRefGoogle ScholarPubMed
Diamond, J. M. & Karasov, W. H. (1984). Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro. Journal of Physiology 349, 419440.CrossRefGoogle ScholarPubMed
Dowling, R. H. (1973). The influence of luminal nutrition on intestinal adaptation after small bowel resection and bypass. In Intestinal Adaptation, pp. 3545 [Dowling, R. H. and Riecken, E. O., editors]. Stuttgart: Schattauer.Google ScholarPubMed
Dyer, J., Beechey, R. B., Gorvel, J.-P., Smith, R. T., Wootton, R. & Shirazi-Beechey, S. R. (1990). Glycyl-L-proline transport in rabbit enterocyte basolateral-membrane vesicles. Biochemical Journal 269, 565571.CrossRefGoogle ScholarPubMed
Ferraris, R. P. & Diamond, J. M. (1986). Use of phlorizin binding to demonstrate induction of intestinal glucose transporters. Journal of Membrane Biology 94, 7782.CrossRefGoogle ScholarPubMed
Ferraris, R. P. & Diamond, J. M. (1989). Specific regulation of intestinal nutrient transporters by their dietary substrates. Annual Review of Physiology 51, 125141.Google Scholar
Ferraris, R. P. & Diamond, J. M. (1992). Crypt-villus site of glucose transporter induction by dietary carbohydrate in mouse intestine. American Journal of Physiology 262, G1069G1073.Google ScholarPubMed
Ferraris, R. P., Diamond, J. M. & Kwan, W. W. (1988 a). Dietary regulation of intestinal transport of the dipeptide carnosine. American Journal of Physiology 255, G143G150.Google ScholarPubMed
Ferraris, R. P., Kwan, W. W. & Diamond, J. M. (1988 b). Regulatory signals for intestinal amino acid transporters and peptides. American Journal of Physiology 255, G151–G157.Google Scholar
Ferraris, R. P., Villenas, S. A., Hirayama, B. A. & Diamond, J. M. (1992). Effect of diet on glucose transporter site density along the crypt-villus axis. American Journal of Physiology 262, G1060G1068.Google ScholarPubMed
Ganapathy, V. & Leibach, F. H. (1983). Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. Journal of Biological Chemistry 258, 1418914192.Google Scholar
Gould, G. W. & Bell, G. I. (1990). Facilitative glucose transporters: an expanding family. Trends in Biochemical Sciences 15, 1823.CrossRefGoogle ScholarPubMed
Hedinger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. (1987). Expression cloning and cDNA sequencing of the Na+ glucose co-transporter. Nature 330, 379381.CrossRefGoogle Scholar
Hopfer, U. (1987). Membrane transport mechanisms for hexoses and amino acids in the small intestine. In Physiology of the Gastrointestinal Tract, 2nd ed., pp. 14991526 [Johnson, L. R., editor]. New York: Raven Press.Google Scholar
Karasov, W. H., Solberg, D. H. & Diamond, J. M. (1987). Dependence of intestinal amino acid uptake on dietary protein or amino acid levels. American Journal of Physiology 252, G614G625.Google ScholarPubMed
Lawless, K., Maenz, D. D. & Cheeseman, C. I. (1987). Is leucine an allosteric modulator of the lysine transporter in the intestinal basolateral membrane? American Journal of Physiology 253, G637G642.Google ScholarPubMed
Scharrer, E. (1976). Developmental changes of sugar transport in the ovine small intestine. Pflügers Archives 366, 147151.Google Scholar
Shirazi-Beechey, S. P., Hirayama, B. A., Wang, Y., Scott, D., Smith, M. W. & Wright, E. M. (1991). Ontogenic development of lamb intestinal sodium-glucose co-transporter is regulated by diet. Journal of Physiology 437, 699708.CrossRefGoogle ScholarPubMed
Shirazi-Beechey, S. P., Lescale-Matys, L., Dyer, J., Freeman, T. C., Scott, D. & Wright, E. M. (1992). Regulation of intestinal Na+-glucose co-transporter expression in sheep. Journal of Physiology 452, 328P.Google Scholar
Solberg, D. H. & Diamond, J. M. (1987). Comparison of different dietary sugars as inducers of intestinal sugar transporters. American Journal of Physiology 252, G574G584.Google ScholarPubMed
Stein, E. D., Chang, S. D. & Diamond, J. M. (1987). Comparison of different dietary amino acids as inducers of intestinal amino acid transport. American Journal of Physiology 252, G626G635.Google ScholarPubMed
Thorens, B., Cheng, Z.-Q., Brown, D. & Lodish, H. F. (1990). Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. American Journal of Physiology 259, C279C285.CrossRefGoogle ScholarPubMed
Thorens, B., Sarkar, H. K., Kaback, H. R. & Lodish, H. F. (1988). Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and pancreatic β-cells. Cell 55, 281290.Google Scholar
Thwaites, D. T., Brown, C. D. A., Hirst, B. H. & Simmons, N. L. (1993). Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+-coupled carriers at both apical and basal membranes. Journal of Biological Chemistry 268, 76407642.CrossRefGoogle ScholarPubMed