Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T09:51:58.922Z Has data issue: false hasContentIssue false

Dietary effects on tyrosine availability and catecholamine synthesis in the central nervous system: possible relevance to the control of protein intake

Published online by Cambridge University Press:  28 February 2007

John D. Fernstrom
Affiliation:
Departments of Psychiatry, Pharmacology and Behavioral Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
Madelyn H. Fernstrom
Affiliation:
Departments of Psychiatry, Pharmacology and Behavioral Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrition of the Brain’
Copyright
Copyright © The Nutrition Society 1994

References

Ashley, O. O. (1985). Factors affecting the selection of protein and carbohydrate from a dietary choice. Nutrition Research 5, 555571.Google Scholar
Bannon, M. J. & Roth, R. H. (1983). Pharmacology of mesocortical dopamine neurons. Pharmacological Reviews 35, 5368.Google Scholar
Bradberry, C. W., Karasic, D. H., Deutch, A. Y. & Roth, R. H. (1989). Regionally-specific alterations in mesotelencephalic dopamine synthesis in diabetic rats: association with precursor tyrosine. Journal of Neural Transmission 78, 221229.CrossRefGoogle ScholarPubMed
Carlsson, A. & Lindqvist, M. (1978). Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn Schmiedeberg's Archives of Pharmacology 303, 157164.Google Scholar
Chirigos, M. A., Greengard, P. & Udenfriend, S. (1960). Uptake of tyrosine by rat brain in vivo. Journal of Biological Chemistry 235, 20752079.Google Scholar
Cooper, J. R., Bloom, F. E. & Roth, R. H. (1991). The Biochemical Basis of Neuropharmacology, pp. 1454. New York: Oxford University Press.Google Scholar
During, M. J., Acworth, I. N. & Wurtman, R. J. (1988). Effects of systemic tyrosine on dopamine release fróm rat corpus striatum and nucleus accumbens. Brain Research 452, 378380.Google Scholar
Fernstrom, J. D. (1993). Role of precursor availability in the control of monoamine biosynthesis in brain. Physiological Reviews 63, 484546.Google Scholar
Fernstrom, J. D. (1990). Aromatic amino acids and monoamine synthesis in the central nervous system: Influence of the diet. Journal of Nutritional Biochemistry 1, 508517.CrossRefGoogle ScholarPubMed
Fernstrom, J. D. & Faller, D. V. (1978). Neutral amino acids in the brain: changes in response to food ingestion. Journal of Neurochemistry 30, 15311538.CrossRefGoogle ScholarPubMed
Fernstrom, M. H. & Fernstrom, J. D. (1987). Protein consumption increases tyrosine concentration and in vivo tyrosine hydroxylation rate in the light-adapted rat retina. Brain Research 401, 392396.Google Scholar
Fernstrom, M. H. & Fernstrom, J. D. (1994). Effect of chronic protein ingestion on rat central nervous system tyrosine levels and tyrosine hydroxylation rate. FASEB Journal 8, A 821 (Abstr.).Google Scholar
Fernstrom, M. H., Volk, E. A. & Fernstrom, J. D. (1986 a). In vivo inhibition of tyrosine uptake into rat retina by large neutral but not acidic amino acids. American Journal of Physiology 251, E393E399.Google Scholar
Fernstrom, M. H., Volk, E. A., Fernstrom, J. D. & Iuvone, P. M. (1986 b). Effect of tyrosine administration on dopa accumulation in light- and dark-adapted retinas from normal and diabetic rats. Life Sciences 39, 20492057.Google Scholar
Gaulin, S. J. C. & Gaulin, C. K. (1982). Behavioral ecology of Alouatta seniculus in Andean cloud forest. International Journal of Primatology 3, 132.Google Scholar
Gibson, C. J. (1986). Dietary control of retinal dopamine synthesis. Brain Research 382, 195198.Google Scholar
Gustafson, J. M., Dodds, S. J., Burgus, R. C. & Mercer, L. P. (1986). Prediction of brain and serum free amino acid profiles in rats fed graded levels of protein. Journal of Nutrition 116, 16671681.Google Scholar
Hoebel, B. G. & Leibowitz, S. F. (1981). Brain monoamines in the modulation of self-stimulation, feeding, and body weight. In Brain, Behavior, and Bodily Disease, p. 103 [Weiner, H., Hofer, M. A. and Stunkard, A. J., editors]. New York: Raven Press.Google Scholar
Iuvone, P. M., Galli, C. L., Garrison-Gund, C. K. & Neff, N. H. (1978 a). Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202, 901902.CrossRefGoogle ScholarPubMed
Iuvone, P. M., Galli, C. L. & Neff, N. H. (1978 b). Retinal tyrosine hydroxylase: comparison of short-term and long-term stimulation by light. Molecular Pharmacology 14, 12121219.Google Scholar
Marriott, B. M. (1988). Time budgets of rhesus monkeys (Macaca mulatta) in a forest habitat and on Cayo Santiago. In Ecology and Behavior in Food-Enhanced Primate Groups, p. 125 [Fa, J. E. and Southwick, C. H., editors]. New York: Alan R. Liss.Google Scholar
Milton, K. (1979). Factors influencing leaf choice by howler monkeys: A test of some hypotheses of food selection by generalist herbivores. American Naturalist 114, 362378.Google Scholar
Milton, K. (1993). Diet and primate evolution. Scientific American 269, 8693.Google Scholar
Nakagawa, N. (1989). Bioenergetics of Japanese monkeys (Macaca fuscata) on Kinkazan island during winter. Primates 30, 441460.Google Scholar
National Academy of Sciences (1978). Nutrient Requirements of Domestic Animals, No. 10. Nutrient Requirements of Laboratory Animals, pp. 196. Washington, D.C.: National Academy of Sciences.Google Scholar
Oldendorf, W. H. (1971). Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. American Journal of Physiology 221, 16291639.Google Scholar
Pardridge, W. M. & Oldendorf, W. H. (1977). Transport of metabolic substrates through the blood-brain barrier. Journal of Neurochemistry 28, 512.CrossRefGoogle ScholarPubMed
Peters, J. C. & Harper, A. E. (1985). Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism. Journal of Nutrition 115, 382398.CrossRefGoogle ScholarPubMed
Raemaekers, J. (1978). Changes through the day in the food choice of wild gibbons Folia Primatologia 30, 194205.Google Scholar
Rogers, M. E., Maisels, F., Williamson, E. A., Fernandez, M. & Tutin, C. E. G. (1990). Gorilla diet in the Lope Reserve, Gabon: A nutritional analysis. Oecologia 84, 326339.CrossRefGoogle Scholar
Scally, M. C., Ulus, I. & Wurtman, R. J. (1977). Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. Journal of Neural Transmission 41, 16.CrossRefGoogle ScholarPubMed
Sved, A. F., Fernstrom, J. D. & Wurtman, R. J. (1979 a). Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats. Proceedings of the National Academy of Sciences, USA 76, 35113514.Google Scholar
Sved, A. F., Fernstrom, J. D. & Wurtman, R. J. (1979 b). Tyrosine administration decreases serum prolactin levels in chronically reserpinized rats. Life Sciences 25, 12931299.CrossRefGoogle ScholarPubMed
Tornquist, P. & Alm, A. (1986). Carrier-mediated transport of amino acids through the blood-retinal and blood-brain barriers. Graefe's Archives of Clinical and Experimental Ophthalmology 224, 2125.Google Scholar
Wellman, P. J. (1992). Overview of adrenergic anorectic agents. American Journal of Clinical Nutrition 55, 193S198S.CrossRefGoogle ScholarPubMed
Wellman, P. J., Davies, B. T., Morien, A. & McMahon, L. (1993). Minireview: Modulation of feeding by hypothalamic paraventricular nucleus α1- and α2-adrenergic receptors. Life Sciences 53, 669679.Google Scholar
Wurtman, R. J., Hefti, F. & Melamed, E. (1980). Precursor control of neurotransmitter synthesis. Pharmacological Reviews 32, 315335.Google ScholarPubMed