Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T22:42:08.277Z Has data issue: false hasContentIssue false

Cell lineage and differentiation during growth of the early mammalian embryo

Published online by Cambridge University Press:  28 February 2007

R. L. Gardner
Affiliation:
Imperial Cancer Research Fund Developmental Biology Unit, Department of Zoology, South Parks Road, Oxford OX1 3PS
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Inaugural Lecture, Reproduction and Growth Group
Copyright
Copyright © The Nutrition Society 1990

References

Adamson, E. D. & Gardner, R. L. (1979). Control of early development. British Medical Bulletin 35, 113119.CrossRefGoogle ScholarPubMed
Adiga, P. R. & Murty, C. V. R. (1983). Vitamin carrier proteins during embryonic development in birds and mammals. In Molecular Biology of Egg Maturation: Ciba Foundation Symposium no. 98, pp. 111131 [Porter, R. and Whelan, J., editors]. London: Pitman.CrossRefGoogle Scholar
Aitken, R. J. (1977). Embryonic diapause. In Development in Mammals, vol. 1, pp. 307359 [Johnson, M. H., editor]. Amsterdam: North-Holland Publishers.Google Scholar
Amoroso, E. C. (1952). Placentation. In Marshall's Physiology of Reproduction, vol. 2, 3rd ed. p. 152 [Parkes, A. S., editor]. London: Longmans Green & Co.Google Scholar
Auerbach, S. & Brinster, R. L. (1967). Lactate dehydrogenase isozymes in the early mouse embryo. Experimental Cell Research 46, 8992.CrossRefGoogle ScholarPubMed
Balakier, H. & Pedersen, R. A. (1982). Allocation of cells to inner cell mass and trophectoderm lineages in preimplantation mouse embryos. Developmental Biology 90, 352362.CrossRefGoogle ScholarPubMed
Barbehenn, E. K., Wales, R. G. & Lowry, O. H. (1974). The explanation for the blockade of glycolysis in early mouse embryo. Proceedings of the National Academy of Sciences, USA 71, 10561060.CrossRefGoogle Scholar
Beddington, R. S. P. (1981). An autoradiographic analysis of the potency of embryonic ectoderm in the 8th day postimplantation mouse embryo. Journal of Embryology and Experimental Morphology 64, 87104.Google ScholarPubMed
Bergstrom, S. (1978). Experimental delayed implantation. In Methods in Mammalian Reproduction, pp. 419435 [Daniel, J. C., editor]. New York: Academic Press.CrossRefGoogle Scholar
Braude, P., Bolton, V. & Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459461.CrossRefGoogle ScholarPubMed
Brinster, R. L. (1967). Protein content of the mouse embryo during the first five days of development. Journal of Reproduction and Fertility 13, 413420.CrossRefGoogle ScholarPubMed
Brinster, R. L. (1970). In vitro culture of mammalian ova. Advances in Biosciences 4, 199233.Google Scholar
Brown, N. A. & Fabro, S. (1981). Quantitation of rat embryonic development in vitro: a morphological scoring system. Teratology 24, 6578.CrossRefGoogle ScholarPubMed
Buehr, M. & McLaren, A. (1974). Size regulation in chimaeric mouse embryos. Journal of Embryology and Experimental Morphology 31, 229234.Google ScholarPubMed
Clough, J. R. & Whittingham, D. G. (1983). Metabolism of 14C-glucose by postimplantation mouse embryos in vitro. Journal of Embryology and Experimental Morphology 74, 133142.Google ScholarPubMed
Dickson, A. D. (1963). Trophoblastic giant cell transformation of mouse blastocysts. Journal of Reproduction and Fertility 6, 465466.CrossRefGoogle Scholar
Flach, G., Johnson, M. H., Braude, P. R., Taylor, R. A. S. & Bolton, V. N. (1982). The transition from maternal to embryonic control in the 2-cell mouse embryo. Journal of the European Molecular Biology Organization 1, 681686.CrossRefGoogle ScholarPubMed
Fleming, T. P. (1987). A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Developmental Biology 119, 520531.CrossRefGoogle ScholarPubMed
Gardner, R. L. (1983). Origin and differentiation of extra-embryonic tissue in the mouse. In International Review of Experimental Pathology, vol. 24, pp. 63133 [Richter, G. W. and Epstein, M. A., editors]. New York: Academic Press.Google Scholar
Gardner, R. L. (1984). Mammalian chimaeras – future perspectives. In Chimeras in Developmental Biology, pp. 431443 [Le Douarin, N. M. and McLaren, A., editors]. London: Academic Press.Google Scholar
Gardner, R. L. (1985). Clonal analysis of early mammalian development. Philosophical Transactions of the Royal Society London, B312, 163178.Google Scholar
Gardner, R. L. (1988). Embryo transfer and manipulation. In New Developments in Biosciences: Their Implications for Laboratory Animal Science, pp. 147162 [Beynen, A. C. and Solleveld, H. A., editors]. Dordrecht: Martinus Nijhoff.CrossRefGoogle Scholar
Gardner, R. L. (1989). Cell allocation and lineage in the early mammalian embryo. In Cellular Basis of Morphogenesis: Ciba Foundation Symposium no. 144, pp. 172181 [Marsh, J., editor].Google Scholar
Gardner, R. L. & Beddington, R. S. P. (1988). Multi-lineage ‘stem’ cells in the mammalian embryo. Journal of Cell Science 10, Suppl., 1127.CrossRefGoogle ScholarPubMed
Gardner, R. L., Davies, T. J. & Carcy, M. S. (1988). Effect of delayed implantation on differentiation of the extra-embryonic endoderm in the mouse blastocyst. Placenta 9, 343359.CrossRefGoogle ScholarPubMed
Gardner, R. L. & Lyon, M. F. (1971). X-chromosome inactivation studied by injection of a single cell into the mouse blastocyst. Nature 231, 385386.CrossRefGoogle ScholarPubMed
Gardner, R. L., Lyon, M. F., Evans, E. P. & Burtenshaw, M. D. (1985). Clonal analysis of X-chromosome inactivation and the origin of the germ line in the mouse embryo. Journal of Embryology and Experimental Morphology 88, 349363.Google ScholarPubMed
Gardner, R. L., Papaioannou, V. E. & Barton, S. C. (1973). Origin of the ectoplacental cone and secondary giant cell in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. Journal of Embryology and Experimental Morphology 30, 561572.Google ScholarPubMed
Gearhart, J., Shaffer, R. M., Musser, J. M. & Oster-Granite, M. L. (1982). Cell lineage analyses of preimplantation mouse embryos after blastomere injection with horseradish peroxidase. Pediatric Research 16, 111A.Google Scholar
Given, R. L. (1988). DNA synthesis in the mouse blastocyst during the beginning of delayed implantation. Journal of Experimental Zoology 248, 365370.CrossRefGoogle ScholarPubMed
Given, R. L. & Weitlauf, H. M. (1981). Resumption of DNA synthesis during activation of delayed implanting mouse blastocysts. Journal of Experimental Zoology 218, 253259.CrossRefGoogle ScholarPubMed
Handyside, A. H. (1980). Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. Journal of Embryology and Experimental Morphology 60, 99116.Google ScholarPubMed
Hensleigh, H. C. & Weitlauf, H. M. (1974). Effect of delayed implantation on dry weight and lipid content of mouse blastocysts. Biology of Reproduction 10, 315320.CrossRefGoogle ScholarPubMed
Johnson, M. H. & Maro, B. (1986). Time and space in the mouse early embryo: a cell biological approach to cell diversification. In Experimental Approaches to Mammalian Embryonic Development, pp. 3565 [Rossant, J. and Pedersen, R. A., editors]. Cambridge: Cambridge University Press.Google Scholar
Johnson, M. H., Pratt, H. P. M. & Handyside, A. H. (1981). The generation and recognition of positional information in the preimplantation mouse embryo. In Cellular and Molecular Aspects of Implantation, pp. 5574 [Glasser, S. and Bullock, D., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Johnson, M. H. & Ziomek, C. A. (1981). The foundation of two distinct cell lineages within the mouse morula. Cell 24, 7180.CrossRefGoogle ScholarPubMed
Kelly, S. J. (1977). Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. Journal of Experimental Zoology 200, 365376.CrossRefGoogle ScholarPubMed
Lawson, K. A. & Pedersen, R. A. (1987). Cell fate, morphogenetic movement, and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101, 627652.CrossRefGoogle ScholarPubMed
Leese, H. (1987). Non-invasive methods for assessing embryos. Human Reproduction 2, 435438.CrossRefGoogle ScholarPubMed
Lewis, N. E. & Rossant, J. (1982). Mechanism of size regulation in mouse embryo aggregates. Journal of Embryology and Experimental Morphology 72, 169181.Google ScholarPubMed
McLaren, A. (1976). Growth from fertilization to birth in the mouse. In Embryogenesis in Mammals. Ciba Foundation Symposium no. 40 (new Series), pp. 4751 [Elliott, K. and O'Connor, M., editors]. Amsterdam: Elsevier.CrossRefGoogle Scholar
Mantalenakis, S. J. & Ketchel, M. M. (1966). Frequency and extent of delayed implantation in lactating rats and mice. Journal of Reproduction and Fertility 12, 391394.CrossRefGoogle ScholarPubMed
Mintz, B. (1962). Formation of genotypically mosaic mouse embryos. American Zoologist 2, 432, Abstr. 310.Google Scholar
Monk, M. & Petzoldt, U. (1977). Control of inner cell mass development in cultured mouse blastocysts. Nature 265, 338339.CrossRefGoogle ScholarPubMed
New, D. A. T., Coppola, P. T. & Cockroft, D. L. (1976). Improved development of head-fold rat embryos in culture resulting from low oxygen and modifications of the culture serum. Journal of Reproduction and Fertility 48, 219222.CrossRefGoogle Scholar
Nieder, G. L. & Weitlauf, H. M. (1984). Regulation of glycolysis in the mouse blastocyst during delayed implantation. Journal of Experimental Zoology 231, 121129.CrossRefGoogle ScholarPubMed
Parr, M. B. & Parr, E. L. (1986). Permeability of the primary decidual zone in the rat uterus: studies using fluorescein-labelled proteins and dextrans. Biology of Reproduction 34, 393403.CrossRefGoogle Scholar
Pedersen, R. A., Balakier, H. & Wu, K. (1982). Cell lineage analysis of mouse embryos and the origin of inner cell mass and trophectoderm. Journal of Cell Biology 95, 163A.Google Scholar
Rands, G. F. (1985). Cell allocation in half- and quadruple-sized mouse embryos. Journal of Experimental Zoology 236, 6770.CrossRefGoogle ScholarPubMed
Rands, G. F. (1986 a). Size regulation in the mouse embryo. I. The development of quadruple aggregates. Journal of Embryology and Experimental Morphology 94, 139148.Google ScholarPubMed
Rands, G. F. (1986 b). Size regulation in the mouse embryo. II. The development of half embryos. Journal of Embryology and Experimental Morphology 98, 209217.Google ScholarPubMed
Rogers, P. A. W., Murphy, C. R. & Gannon, B. J. (1982). Absence of capillaries in the endometrium surrounding the implanting rat blastocyst. Micron 13, 373374.Google Scholar
Rossant, J., Gardner, R. L. & Alexandre, H. L. (1978). Investigation of the potency of cells from the postimplantation mouse embryo by blastocyst injection: a preliminary report. Journal of Embryology and Experimental Morphology 48, 239247.Google ScholarPubMed
Sanes, J. R., Rubenstein, J. L. R. & Nicolas, J.-F. (1986). Use of a recombinant retrovirus to study postimplantation cell lineage in mouse embryos. Journal of the European Molecular Biology Organization 5, 31333142.CrossRefGoogle ScholarPubMed
Sellens, M. H., Stein, S. & Sherman, M. I. (1981). Protein and free amino acid content in preimplantation mouse embryos and in blastocysts under various culture conditions. Journal of Reproduction and Fertility 61, 307315.CrossRefGoogle ScholarPubMed
Slack, J. M. W. (1989). Growth factors in embryonic development. Lancet i, 13121315.CrossRefGoogle Scholar
Snell, G. D. & Stevens, L. C. (1966). Early embryology. In Biology of the Laboratory Mouse, 2nd ed., pp. 205245 [Green, E. L., editor]. New York: McGraw-Hill.Google Scholar
Snow, M. H. L. (1976). Embryo growth during the immediate postimplantation period. In Embryogenesis in Mammals: Ciba Foundation Symposium no. 40 (new Series), pp. 5364 [Elliott, K. and O'Connor, M., editors]. Amsterdam: Elsevier.CrossRefGoogle Scholar
Snow, M. H. L. & Tam, P. P. L. (1979). Is compensatory growth a complicating factor in mouse teratology? Nature 279, 555557.CrossRefGoogle ScholarPubMed
Snow, M. H. L., Tam, P. P. L. & McLaren, A. (1981). On the control and regulation of size and morphogenesis in mammalian embryos. In Levels of Genetic Control in Development, pp. 201217. New York: Alan R. Liss.Google Scholar
Tarkowski, A. K. (1961). Mouse chimaeras developed from fused eggs. Nature 190, 857860.CrossRefGoogle ScholarPubMed
Vorherr, H., Vorherr, U. F., Palhak, D., Reyes, E., Jordan, S. & Messer, R. H. (1984). Embryonic/fetal growth following suckling induced delay of implantation. American Journal of Obstetrics and Gynecology 149, 209214.CrossRefGoogle ScholarPubMed
Wales, R. G., Whittingham, D. G., Hardy, K. & Craft, I. L. (1987). Metabolism of glucose by human embryos. Journal of Reproduction and Fertility 79, 289297.CrossRefGoogle ScholarPubMed
West, J. D., Leask, R. & Green, J. F. (1986). Quantification of the transition from oocyte-coded to embryo-coded glucose phosphate isomerase in mouse embryos. Journal of Embryology and Experimental Morphology 97, 225237.Google ScholarPubMed