Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T03:25:48.362Z Has data issue: false hasContentIssue false

Recombination lines and maser effects

Published online by Cambridge University Press:  07 February 2024

Zulema Abraham*
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo Rua do Matão 1226, CEP 05508-090, São Paulo, Brazil.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Maser effects occur in recombination lines when the plasma departs from local thermodynamic equilibrium (LTE). Its consequence is not as dramatic as that found in molecular masers, and therefore it is more difficult to recognize. Besides, it occurs in compact high density regions, and its lines fall at millimeter and submillimeter wavelengths, only recently available with good angular resolution. This review will focus on the theoretical aspects of maser recombination lines and on the recent detection of these masers in different astronomical objects.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abraham, Z., Beaklini, P. P. B., Cox, P., et al. 2020, MNRAS, 499, 2493 10.1093/mnras/staa2907CrossRefGoogle Scholar
Abraham, Z., Falceta-Gonçalves, D., Beaklini, P. P. B., 2014, ApJ, 791, 95 10.1088/0004-637X/791/2/95CrossRefGoogle Scholar
Abraham, Z., Beaklini, P. P. B., Cox, P., Falceta-Gonçalves, D., Nyman, L-A, 2020, MNRAS, 499, 2493 10.1093/mnras/staa2907CrossRefGoogle Scholar
Aleman, I. et al. 2018, MNRAS, 477, 4499 10.1093/mnras/sty966CrossRefGoogle Scholar
Báez-Rubio, A., Martín-Pintado, J., Thum, C., Planesas, P., 2013, A&A, 553,4510.1051/0004-6361/201219889CrossRefGoogle Scholar
Brockelhurst, M. 1979, MNRAS, 148, 417 10.1093/mnras/148.4.417CrossRefGoogle Scholar
Corcoran, M. F., Liburd, J., Morris, D., et al. 2017, ApJ, 838, 45 10.3847/1538-4357/aa6347CrossRefGoogle Scholar
Cox, P. et al. 1995, A&A, 295, L39 Google Scholar
Damineli, A. 1996, ApJ, 460, L49 10.1086/309961CrossRefGoogle Scholar
Dravskikh, Z. V. & Dravskikh, A. F., 1964, Astron. Tsirk., 282, 2 Google Scholar
Duncan, R. A., White, S. M., 2003, MNRAS, 338, 425 10.1046/j.1365-8711.2003.06287.xCrossRefGoogle Scholar
Goldberg, L., 1966, ApJ, 144, 1225 10.1086/148723CrossRefGoogle Scholar
Hoglund, B. and Mezger, P. G., 1965, Science, 150, 339.10.1126/science.150.3694.339CrossRefGoogle Scholar
Jiménez-Serra, I., Báez-Rubio, A., Martín-Pintado, J., Zhang, Q., Rivilla, V. M., 2020, ApJ, 897, 33 10.3847/2041-8213/aba050CrossRefGoogle Scholar
Martin-Pintado, J., Bachiller, R., Thurn, C., Walmsley, C. M., 1989, A&A, 215, L13 Google Scholar
Menzel, D. H., 1968, Nature, 218, 756.10.1038/218756a0CrossRefGoogle Scholar
Mezger, P. G. & Hoglund, B., 1967, ApJ, 147, 579 Google Scholar
Prozesky, A. & Smits, D. P., 2018, MNRAS, 478, 2766 10.1093/mnras/sty1189CrossRefGoogle Scholar
Storey, P. J., Hummer, D. G., 1995, MNRAS, 272, 41 10.1093/mnras/272.1.41CrossRefGoogle Scholar
Strelnitski, V. S., Ponomarev, V. O., Smith, H. A. 1996, ApJ, 470, 1118 10.1086/177936CrossRefGoogle Scholar
Walmsley, C. M. 1990, A&AS, 82, 201 Google Scholar
Zhu, F.-Y., Zhu, Q.-F., Wang, J.-Z., Zhang, J.-S., 2019, ApJ, 881, 14 10.3847/1538-4357/ab2a75CrossRefGoogle Scholar