Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T05:59:15.087Z Has data issue: false hasContentIssue false

On the predictability horizon in Impact Monitoring of Near Earth Objects

Published online by Cambridge University Press:  16 October 2024

Giacomo Tommei*
Affiliation:
University of Pisa
Giovanni B. Valsecchi
Affiliation:
IAPS-INAF, Rome IFAC-CNR, Sesto Fiorentino
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Impact Monitoring (IM) of Near Earth Objects (NEOs) is a fundamental part of the planetary defense strategy. Current NEO IM systems (Aegis, NEODyS and Sentry) scan the Confidence Region (CR) of each observed object looking for Virtual Impactors (VIs) with a time horizon of about 100 years. This procedure is performed regardless of the uncertainty with which the orbit of the object is known, and without considering whether a scattering encounter is present in the propagation time span. In view of the likely future increase of the IM workload due to higher future NEO discovery rates, it might be more reasonable to adapt the predictability horizon of the impacts to each object, taking into account the orbit uncertainty and the close encounters experienced. In this paper we discuss the problem of estimating a reasonable predictability horizon when multiple close encounters are present and start to address the problem proposing a formal mathematical definition of scattering encounter.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bedini, L., Tommei, G. 2023, submitted to A&AGoogle Scholar
Cheng, A. F. et al. 2018, Planet. Space Sci. 157, 104 CrossRefGoogle Scholar
Cheng, A. F. et al. 2023, Nature 616, 457 CrossRefGoogle Scholar
Chesley, S. R. 2006, in : Lazzaro, D., Ferraz-Mello, S. & Fernández, J.A. (eds.), Asteroids, Comets, Meteors 2005 Proc. IAU Symposium No. 229 (Cambridge: CUP), p. 215Google Scholar
Chesley, S. R., Milani, A. 2000, Bull. Am. Astron. Soc. 32, 862 Google Scholar
Chesley, S. R. et al. 2014, Icarus 235, 5 CrossRefGoogle Scholar
Cibin, L., Chiarini, M., Bernardi, F., Ragazzoni, R., Salinari, P. 2016, MemSAIt 87, 197 Google Scholar
Del Vigna, A., Milani, A., Spoto, F., Chessa, A, Valsecchi, G. B. 2019a, Icarus 321, 647 CrossRefGoogle Scholar
Del Vigna, A., Roa, J., Farnocchia, D., Micheli, M., Tholen, D., Guerra, F., Spoto, F., Valsecchi, G. B. 2019b, A&A 627, L11 Google Scholar
Del Vigna, A. 2020, Celest. Mech. Dynam. Astron. 132, 49 CrossRefGoogle Scholar
Del Vigna, A., Guerra, F, Valsecchi, G. B. 2020, Icarus 351, 113966 CrossRefGoogle Scholar
Farnocchia, D., Chesley, S. R., Micheli, M. 2015, Icarus 258, 18 CrossRefGoogle Scholar
Farnocchia, D., Chesley, S. R., et al. 2021, Icarus 369, 114594 CrossRefGoogle Scholar
Greenberg, R., Carusi, A., Valsecchi, G. B. 1988, Icarus 75,1CrossRefGoogle Scholar
Gronchi, G. F. 2005, Celest. Mech. Dynam. Astron. 93, 295 CrossRefGoogle Scholar
Gronchi, G. F., Tommei, G. 2007, Discret. Contin. Dynam. Syst. B 7, 755 CrossRefGoogle Scholar
Jones, R. L. et al. 2018, Icarus 303, 181 CrossRefGoogle Scholar
Michel, P. et al. 2022, PSJ 3, 160 Google Scholar
Milani, A., Chesley, S.R., Valsecchi, G. B. 1999, A&A 346, L65 Google Scholar
Milani, A., Chesley, S.R., Valsecchi, G. B. 2000a, Planet. Space Sci. 48, 945 CrossRefGoogle Scholar
Milani, A., Chesley, S.R., Boattini, A., Valsecchi, G. B. 2000b, Icarus 145, 12 CrossRefGoogle Scholar
Milani, A., Chesley, S. R., Sansaturio, M. E., Tommei, G., Valsecchi, G. B. 2005a, Icarus 173, 362 CrossRefGoogle Scholar
Milani, A., Sansaturio, M. E., Tommei, G., Arratia, O., Chesley, S. R. 2005b, A&A 431, 729 Google Scholar
Mochi, M., Tommei, G. 2021, Universe 7, 10 CrossRefGoogle Scholar
Öpik, E. J. 1976, Interplanetary Encounters (Amsterdam: Elsevier)Google Scholar
Rivkin, A., Cheng, A. 2023, Nature Communications 14, 1003 CrossRefGoogle Scholar
Roa, J., Farnocchia, D, Chesley, S. R. 2021, AJ 162, 277 CrossRefGoogle Scholar
Solin, O., Granvik, M. 2018, A&A 616, A176 Google Scholar
Spoto, F., Milani, A., Farnocchia, D., Chesley, S. R., Micheli, M., Valsecchi, G. B., Perna, D., Hainaut, O. 2014, A&A 572, A100 Google Scholar
Spoto, F., Milani, A. 2016 Celest. Mech. Dynam. Astron. 124, 295CrossRefGoogle Scholar
Spoto, F., Del Vigna, A., Milani, A., Tommei, G., Tanga, P., Mignard, F., Carry, B., Thuillot, W., David, P. 2018, A&A 614, A27 Google Scholar
Tommei, G. 2019, in Proc. ESA NEO and DEBRIS Detection Conf., ESOC 22-24 January 2019 Google Scholar
Tommei, G. 2021, Universe 7, 103 CrossRefGoogle Scholar
Valsecchi, G.B., Milani, A, Gronchi, G. F., Chesley, S. R. 2003, A&A 408, 1179 Google Scholar
Valsecchi, G.B., Alessi, E. M., Rossi, A. 2018. Celest. Mech. Dynam. Astron. 130, 8 CrossRefGoogle Scholar
Vavilov, D. E. 2020, MNRAS 492, 4546 CrossRefGoogle Scholar