No CrossRef data available.
Published online by Cambridge University Press: 24 February 2011
Using 3D-MHD Eulerian-grid numerical simulations, we study the formation and evolution of rising magnetic towers propagating into an ambient medium. The towers are generated from a localized injection of pure magnetic energy. No rotation is imposed on the plasma. We compare the evolution of a radiatively cooling tower with an adiabatic one, and find that both bend due to pinch instabilities. Collimation is stronger in the radiative cooling case; the adiabatic tower tends to expand radially. Structural similarities are found between these towers and the millimeter scale magnetic towers produced in laboratory experiments.