Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T19:14:34.707Z Has data issue: false hasContentIssue false

High-Resolution Observations of Dust in SN 1987A

Published online by Cambridge University Press:  17 October 2017

Phil Cigan
Affiliation:
Cardiff University School of Physics and Astronomy The Parade, Cardiff, CF24 3AA email: [email protected]
Haley Gomez
Affiliation:
Cardiff University School of Physics and Astronomy The Parade, Cardiff, CF24 3AA email: [email protected]
Mikako Matsuura
Affiliation:
Cardiff University School of Physics and Astronomy The Parade, Cardiff, CF24 3AA email: [email protected] Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dust produced by supernovae is an important topic for understanding supernova physics and the chemical evolution of galaxies. Recent ALMA observations of SN 1987A have allowed us to peer into the inner ejecta to the cool dust, with spatial resolution from 0.″3 at ~300 GHz down to 0.″09 at ~680 GHz – an improvement over the previous 300 GHz Cycle 0 observations at 0.″69. Comparison of the dust location and morphology with other multiwavelength emission presents an interesting picture of the role dust plays in the ejecta. The mm-FIR SED is compared to radiative models to study the dust composition 30 years after the initial explosion. Fits to the ring emission also probe the drift of the center of the system over time.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Barlow, M. J., Krause, O., Swinyard, B. M., et al. 2010, A&A, 518, L138 Google Scholar
Bouchet, P., Danziger, I. J., & Lucy, L. B. 1991, AJ, 102, 1135 CrossRefGoogle Scholar
De Looze, I., Barlow, M. J., Swinyard, B. M., et al. 2017, MNRAS, 465, 3309 CrossRefGoogle Scholar
Dunne, L., Eales, S., Ivison, R. J., et al. 2003, Nature, 424, 285 CrossRefGoogle Scholar
Dunne, L., Maddox, S. J., Ivison, R. J., et al. 2009, MNRAS, 394, 1307 CrossRefGoogle Scholar
Dwek, E. & Cherchneff, I. 2011, ApJ, 727, 63 CrossRefGoogle Scholar
Fransson, C., Larsson, J., Migotto, K., et al. 2015, ApJL, 806, L19 CrossRefGoogle Scholar
Fransson, C., Larsson, J., Spyromilio, J., et al. 2016, ApJL, 821, L5 CrossRefGoogle Scholar
Gall, C., Hjorth, J., Watson, D., et al. 2014, Nature, 511, 326 CrossRefGoogle Scholar
Gomez, H. L., Krause, O., Barlow, M. J., et al. 2012, ApJ, 760, 96 CrossRefGoogle Scholar
Indebetouw, R., Matsuura, M., Dwek, E., et al. 2014, ApJL, 782, L2 CrossRefGoogle Scholar
James, A., Dunne, L., Eales, S., & Edmunds, M. G. 2002, MNRAS, 335, 753 CrossRefGoogle Scholar
Matsuura, M., Barlow, M. J., Zijlstra, A. A., et al. 2009, MNRAS, 396, 918 CrossRefGoogle Scholar
Matsuura, M., Dwek, E., Meixner, M., et al. 2011, Science, 333, 1258 CrossRefGoogle Scholar
Matsuura, M., Dwek, E., Barlow, M. J., et al. 2015, ApJ, 800, 50 CrossRefGoogle Scholar
Morgan, H. L. & Edmunds, M. G. 2003, MNRAS, 343, 427 CrossRefGoogle Scholar
Nozawa, T., Kozasa, T., Umeda, H., Maeda, K., & Nomoto, K. 2003, ApJ, 598, 785 CrossRefGoogle Scholar
Owen, P. J. & Barlow, M. J. 2015, ApJ, 801, 141 CrossRefGoogle Scholar
Reynolds, S. P., Borkowski, K. J., Green, D. A., et al. 2008, ApJL, 680, L41 CrossRefGoogle Scholar
Rowlands, K., Gomez, H. L., Dunne, L., et al. 2014, MNRAS, 441, 1040 CrossRefGoogle Scholar
Schaerer, D., Boone, F., Zamojski, M., et al. 2015, A&A, 574, A19 Google Scholar
Wooden, D. H., Rank, D. M., Bregman, J. D., et al. 1993, ApJS, 88, 477 CrossRefGoogle Scholar
Zanardo, G., Staveley-Smith, L., Ng, C.-Y., et al. 2013, ApJ, 767, 98 CrossRefGoogle Scholar
Zanardo, G., Staveley-Smith, L., Indebetouw, R., et al. 2014, ApJ, 796, 82 CrossRefGoogle Scholar
Zhukovska, S. 2014, A&A, 562, A76 Google Scholar