Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T00:54:06.465Z Has data issue: false hasContentIssue false

W. R. Bloom and H. Heyer Harmonic analysis of probability measures on hypergroups (de Gruyter Studies in Mathematics Vol. 20, de Gruyter, Berlin, New York 1995) vi + 601pp., 3 11 012105 0, about £140.

Published online by Cambridge University Press:  20 January 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Reviews
Copyright
Copyright © Edinburgh Mathematical Society 1996

References

REFERENCES

1. Askey, R., Orthogonal polynomials and special functions (SIAM, 1975).CrossRefGoogle Scholar
2. Askey, R. et al. , ed., Special functions: group-theoretical aspects and applications (Reidel, 1984).CrossRefGoogle Scholar
3. Diaconis, P., Group representations in probability and statistics (Lecture Notes—Monographs 11, Inst. Math. Statistics, 1988).CrossRefGoogle Scholar
4. Helgason, S., Differential geometry and symmetric spaces (Academic Press, 1962).Google Scholar
5. Heyer, H., Probability measures on locally compact groups (Springer-Verlag, 1977).CrossRefGoogle Scholar
6. Heyer, H., Convolution semigroups of probability measures on Gelfand pairs, Exposition. Math. 1 (1983), 345.Google Scholar
7. Macdonald, I. G. Symmetric functions and Hall polynomials (2nd edn) (Clarendon Press, 1995).CrossRefGoogle Scholar
8. Vilenkin, N. Ya., Special functions and the theory of group representations (Transl. Math. Monographs 22, Amer. Math, Soc., 1968).CrossRefGoogle Scholar
9. Watson, G. N. A treatise on Bessel functions (2nd edn), (Cambridge Univ. Press, 1944).Google Scholar