Article contents
Semiclassical limits of quantum affine spaces
Published online by Cambridge University Press: 28 May 2009
Abstract
Semiclassical limits of generic multi-parameter quantized coordinate rings A=q(kn) of affine spaces are constructed and related to A, for k an algebraically closed field of characteristic zero and q a multiplicatively antisymmetric matrix whose entries generate a torsion-free subgroup of k×. A semiclassical limit of A is a Poisson algebra structure on the corresponding classical coordinate ring R=(kn), and results of Oh, Park, Shin and the authors are used to construct homeomorphisms from the Poisson-prime and Poisson-primitive spectra of R onto the prime and primitive spectra of~A. The Poisson-primitive spectrum of R is then identified with the space of symplectic cores in kn in the sense of Brown and Gordon, and an example is presented (over ℂ) for which the Poisson-primitive spectrum of R is not homeomorphic to the space of symplectic leaves in kn. Finally, these results are extended from quantum affine spaces to quantum affine toric varieties.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Edinburgh Mathematical Society 2009
- 11
- Cited by