Published online by Cambridge University Press: 20 January 2009
The main theorem of this paper is a little involved (though the proof is straightforward using a well-known idea) but the immediate corollaries are interesting. For example, take a complex normed vector space A which is also a normed algebra with identity under each of two multiplications * and ∘. Then these multiplications coincide if and only if there exists α such that ‖a ∘ b ‖ ≦ α ‖ a * b ‖ for a, b in A. This is a condition for the two Arens multiplications on the second dual of a Banach algebra to be identical. By taking * to be the multiplication of a Banach algebra and ∘ to be its opposite, we obtain the condition for commutativity given in (3). Other applications are concerned with conditions under which a bilinear mapping between two algebras is a homomorphism, when an element lies in the centre of an algebra, and a one-dimensional subspace of an algebra is a right ideal. An example shows that the theorem is false for algebras over the real field, but Theorem 2 gives the parallel result in this case.