Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T17:32:06.473Z Has data issue: false hasContentIssue false

A property of Cesàro-Perron integrals

Published online by Cambridge University Press:  20 January 2009

L. S. Bosanquet
Affiliation:
University College, London.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that if f(t) is (a) integrable in the Lebesgue sense, or more generally (b) integrable in the Perron sense, over every interval (α, β) interior to (a, b), and if

exists, then f(t) is integrable in the Perron sense over (a, b) to the value (1·1).

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1940

References

REFERENCES

1.Bosanquet, L. S., “A solution of the Cesàro summability problem for successively derived Fourier series,” Proc. London Math. Soc. (2), 46 (1940), 270289.CrossRefGoogle Scholar
2.Burkill, J. C., “The approximately continuous Perron integral,” Math. Zeitschrift, 34 (1932), 270278.CrossRefGoogle Scholar
3.Burkill, J. C., “The Cesàro-Perron integral,” Proc. London Math. Soc. (2), 34 (1932), 314322.CrossRefGoogle Scholar
4.Burkill, J. C., “The Cesàro-Perron scale of integration,” Proc. London Math. Soc. (2), 39 (1935), 541552.CrossRefGoogle Scholar
5.Burkill, J. C., “The expression of trigonometrical series in Fourier form,” Journal London Math. Soc., 11 (1936), 4348.CrossRefGoogle Scholar
6.Burkill, J. C., “Fractional orders of integrability,” Journal London Math. Soc., 11 (1936), 220226.CrossRefGoogle Scholar
7.Grimshaw, M. E., “The Oauchy property of the generalised Perron integrals,” Proc Cambridge Phil. Soc., 30 (1934), 1518.CrossRefGoogle Scholar
8.Saks, S., Theory of the integral (Warsaw, 1937).Google Scholar
9.Sargent, W. L. C., “A descriptive definition of Cesàro-Perron integrals.” Unpublished.Google Scholar