No CrossRef data available.
Article contents
Open surfaces with congruent geodesics
Published online by Cambridge University Press: 20 January 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The aim of this paper is to prove the Theorem: Let M be a complete non compact surface without boundary in the euclidean space 3. We suppose that all geodesies of M are congruent. Then M is an affine plane in 3.
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 38 , Issue 1 , February 1995 , pp. 179 - 183
- Copyright
- Copyright © Edinburgh Mathematical Society 1995
References
REFERENCES
1.Cartan, E., Sur des families remarquables d'hypersurfaces dans les espaces spheriques, Math. Z. (1939), 335–367.CrossRefGoogle Scholar
2.Charitos, C., Surfaces with Congruent Shadow-lines, Mathematika 37 (1990), 43–58.CrossRefGoogle Scholar
3.Charitos, C. and Pamfilos, P., Surfaces with Isometric Geodesies, Proc. Edinburgh Math. Soc. 34 (1991), 359–362.CrossRefGoogle Scholar
4.Ballman, W., Ghys, E., Haefliger, A., de la Harpe, P., Salem, E., Strebel, R., Troyanov, M., Sur les groupes hyperboliques d'après Gromov (Seminaire Berne édité par E. Ghys et P. de la Harpe, Birkhauser, 1990).Google Scholar
6.Mani, P., Fields of planar bodies tangent to spheres, Monatsh. Math. 74 (1970) 145–149.CrossRefGoogle Scholar
7.Ryan, P., Homogeneity and some curvature conditions for hyperfurfaces, Tôhoku Math. J. 21 (1969), 363–388.CrossRefGoogle Scholar
10.Suss, [Su] W.Kennzeichende Eigenschaften der Kugel als Folgerung eines Brouwersche Fixtpunktsatzes, Comment. Math. Helv. 20 (1947), 61–64.CrossRefGoogle Scholar
You have
Access