Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T06:28:52.715Z Has data issue: false hasContentIssue false

On the structure of the set of solutions of the Darboux problem for hyperbolic equations

Published online by Cambridge University Press:  20 January 2009

F. S. de Blasi
Affiliation:
Dipartimento di Matematica, Università di Roma II, Via O. Raimondo, 00173 Roma, Italy
J. Myjak
Affiliation:
Instytut Matematyki AGHAl. Mickiewicza 3030-059 KrakówPoland
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Consider the Darboux problem

where φ,ψ:IRd (I=[0,1]) are given absolutely continuous functions with φ(0)=ψ(0), and the mapping f : Q × RdRd (Q = I × I) satisfies the following hypotheses:

(A1) f(.,.,z) is measurable for every zRd;

(A2) f(x, y,.) is continuous for a.a. (almost all) (x, y) ∈ Q;

(A3) there exists an integrable function α:Q →[0, + ∞) such that |f(x, y, z)|≦α(x, y) for every (x, y, z)∈ Q × Rd.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1986

References

REFERENCES

1.Aronszajn, A., Le correspondant topologiqué de l'unicite dans la théorie des équations différentielles, Ann. Math. 43 (1942), 730738.CrossRefGoogle Scholar
2.De Blasi, F. S. and Myjak, J., Orlicz type category results for differential equations in Banach spaces, Comm. Math. 23 (1983), 193197.Google Scholar
3.Dunford, N. and Schwartz, J. T., Linear operators, Part I (Interscience, New York and London, 1958).Google Scholar
4.Gorniewicz, L. and Pruszko, T., On the set of solutions of the Darboux problem for some hyperbolic equations, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 38 (1980), 279285.Google Scholar
5.Hukuhara, M., Sur les systémes des équations différentielles ordinaires, Jap. J. Math. 5 (1928), 345350.Google Scholar
6.Hyman, D. M., On decreasing sequence of compact absolute retracts, Fund. Math. 64 (1969), 9197.CrossRefGoogle Scholar