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ON THE STRUCTURE OF THE SET OF SOLUTIONS OF THE
DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS

by F. S. DE BLASI and J. MYJAK
(Received 22nd October 1984)

1. Introduction and main result

Consider the Darboux problem
zy=f(x,3,2)

#(x,0)=¢(x),  20,)=¥(y),

(1)

where ¢, y:1-R? (I={0,1]) are given absolutely continuous functions with @(0)=y(0),
and the mapping f:Q x R®>R? (Q =1 x I satisfies the following hypotheses:

(A, f(.,.,2) is measurable for every ze R%
(A,;) f(x,y,.) is continuous for a.a. (almost all) (x, y)eQ;

(A;) there exists an integrable function a:Q—[0, + o0) such that |f(x, y,z)| S «(x, y) for
every (x,y,z)eQ x R4

Let C(Q,R? denote the Banach space of all continuous functions from Q to R?
endowed with the metric of uniform convergence.
By a solution of problem (1) we mean a function ze C(Q, RY) satisfying

2(x, y) = $(x) +¥(y) — $(0) + z Ef (&:m,2(¢,m)) dE dn,

for every (x, y)eQ.
The purpose of this note is to prove the following

Theorem. Let f:Q x R'*—R? satisfy (A,), (A,), (As). Let ¢,:I-R* be absolutely
continuous functions with ¢(0)=y(0). Then the set {; of all solutions of the problem (1) is
an Rs-set in C(Q, R?).

Recall that a subset of a metric space is called an Rj-set if it is the intersection of a
decreasing sequence of compact absolute retracts. It is known that an R,-set is acyclic,
in particular it is nonempty compact and connected.

Hukuhara [5] and Aronszajn [1] have proved that the set of solutions of the Cauchy
problem x'= f(t,x), x(0) =x,, where f:I x R?”>R? is continuous and bounded, is an R;-
set in C(I,R%. Recently, by using topological degree arguments, Gorniewicz and
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Pruszko [4] have established an analogous result for the Darboux problem (1), under
the main hypothesis that f be continuous with respect to all variables. In this note the
set of solutions of problem (1) is shown to be an R;-set also when f satisfies hypotheses
of Carathéodory type. Our approach is different from that used in [4].

Remark 1. The statement of the theorem remains true when the condition (Aj) is
replaced by the following one: there exist integrable functions «, f:Q—[0, + o) such
that | f(x, y,2)| Sa(x, y) + B(x, y)|z| for each (x,y,2)€Q x R%.

2. Preliminaries
The following lemma can be proved as in [2, Lemma 2].

Lemma 1. Let f:Q x R R? satisfy (A,), (A,), (As). Then for every ¢>0 there exists
a locally lipschitzian function g:Q x R*— R? such that

ffsup lg(&, 1, 2)— £ (&, m,2)| dE dn <.

Recall that a subset A of a metric space is called contractible if there exist a point
xo€A4 and a continuous function h:I x A—A such that h(0,x)=x, and h(1,x)=x for
each xe A.

Lemma 2 [(6]. Let A be a nonempty compact subset of a metric space X. Then A is an
Ry-set in X if and only if A is the intersection of a decreasing sequence of compact
contractible subsets of X.

Let L,(Q, RY be the Banach space of the (equivalence classes of) Lebesgue integrable
functions v:@—R?, with the norm ([ |v(¢, )| d¢ dn.

Lemma 3. Suppose that a sequence {v,} < L,(Q, R satisfies:

(i) [oax, y)| S, y) for almost all (x,y)€Q (xe Ly(Q, RY):
(ii} for each (x,y)e Q the sequence
is Cauchy.

Then {v,} is weakly Cauchy in L,(Q,R%).

E va(& ) dé dn} (2)

Oty

Proof. Clearly {v,} is norm bounded in L,(Q,RY. Let E be a measurable subset of
Q. Let ¢>0. Let P = Q be an elementary set (that is a set which can be expressed as a
union of a finite number of pairwise disjoint rectangles) such that ([zapa(E, n) dédn<e/d
(EAP=(E\P)U(P\E)). As P is an elementary set, by virtue of (ii) one can find an nye N
such that |{[p(v,(& n)—va(& n) dédn|<e/d if m,nZn, Then, by an easy computation,
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one obtains

’ij (va(&, ) — v, (&, m)) dE dn} L2 EIAIP «(&,n) dE dy

+'.‘;;‘.(Um(é, ’7)"”1.(5, 'l)) dé d"]’ <2~2—+§=8

(m,n=ng), which shows that the sequence {ijv,,(é, n) dédn} is Cauchy. By using [3,
Theorem IV.8.7] one can complete the proof.

Denote by & the family of all nonempty compact convex subsets of R% Recall that a
multifunction G:Q—2¢ is said to be measurable if the set {(x, )€ Q|G(x,y) N U+ @} is
(Lebesgue) measurable for every open subset U of R%. A multifunction G:R?— ¥ is said
to be upper semi-continuous (u.s.c.) if the set {ueR"|G(u) < U} is open for every open
subset U of R

Consider the (multivalued) Darboux problem

2, €F(x,y,2)
' (3
2x,0)=¢(x),  2(0,y)=y(y),

where the functions ¢,y:I—-R? are as above, and the multifunction F:Q x R‘-»X"
satisfies the following hypotheses:

(H,) F(,,.,z) is measurable for every z€ R%
(H,) F(x,y,.) is us.c. for a.a. (x,y)eQ;

(H,) there exists an  integrable function a:Q—[0,+0) such that
sup{|u||ue F(x, y,2)} <a(x, y) for every (x,y,z)eQ x R%.

By a solution of (3) we mean a function zeC(Q,R?% such that there exists an
integrable function v: Q- R? satisfying
v(x,y)eF(x,y,z(x,y)) foraa. (x,y)eQ,

and

xy
z(x, y) = ¢(x) + ¥(y) — $(0) + (I) g u(,mdldn forevery (x,y)€Q.
We denote by u the Lebesgue measure in R? and by B the unit closed ball in R?.

Lemma 4. Let F:Q x R satisfy (H,), (H,), (H3) and let ¢, y:1-R? be absolutely
continuous functions with ¢(0)=y(0). In addition, suppose that there exists a locally
lipschitzian  function g:QxR*->R? such that g(x,y,2)eF(x,y,z) for each
(%, ¥,2) €(Q\ Qo) X R?, where pu(Q,)=0. Then the set {r of all solutions of problem (3) is a
(nonempty) compact contractible subset of C(Q, R%).
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Proof. Since the solution of problem (3)' (with g in the place of f) belongs to {, one
has that { # .

Let us show that {; is compact. To this end consider any sequence {z,} = (. Taking
into account the uniform continuity of ¢,y and assumption (H;) one can easily show
that the functions z, are equicontinuous and equibounded. By Ascoli-Arzeld’s Theorem,
passing to a subsequence (without change of notation), we can assume that {z,}
converges uniformly on Q, to a function zye C(Q, RY). For each ne N we have

2%, y)=¢(x)+¢(y)—¢(0)+ﬁvn@, n) dé dn,

where v,(&,n) e F(&,n,2,(& n) for a.a. (&,7)eQ. From (4) it follows that the sequence (2)
converges for each (x,y)eQ. Since L,(Q,R?% is weakly complete, by Lemma 3 there
exists a vy€ L,(Q, R% such that {v,} converges weakly to v,. By Mazur’s Theorem there
exists a sequence {w,} of finite convex combinations of v,’s

k(n) k(n)
W"=Z a?vn+i, ot;'g(), Z a7=1 >
i i=0

i=

such that
%”Wn(é’ ’7)_00(6, ﬂ)ldfdﬂ—vo as n— + oo.

Thus, passing to a subsequence (without change of notation), we can assume that
wal(x, ¥) = vo(x, y) for each (x,y)e Q\Q,, where u(Q,)=0. Let § > Q,, u(Q)=0, be such
that for every (x,y)eQ\Q, the multifunction F(x,y,-) is usc. and, moreover,
vx, y)eF(x,y,z,(x,y)) for n=1,2,.... :

Let (x,y)eQ\@ and let ¢>0. Since F(x,y,.) is us.c. at zy(x,y), there exists n,=
no(x,y,8)eN such that v,(x,y)eF(x,y,z4(x,y)+eB for every n=n,. This implies
w,(x, y) € F(x,y,2¢(x,y)) +€eB for n=n,. From this we deduce that vy(x, y) € F(x, y, zo(x, y)).
Since (x, y) is arbitrary in Q\Q it is proved that vy(x, y) € F(x, y, zo(x, y)) for a.a. (x,y)eQ.
Moreover, from (4) for each (x, y) e Q we have

k(n) x

3 o8z(5.3) = ) + )~ 9(0)+ | j W&, ) dé dn
and seo, letting n— + oo, we get
2o(%, 1) = B(x) + () — $(0) + 5 J vol&,m) dE dn.

Hence z,e{ and the compactness of { is established.
It remains to prove that {; is contractible. Let u, be the (unique) solution of the
Darboux problem z,,=g(x,y,2), z(x,0)=¢(x), z(0,y)=y¥(y). Let ue{r be arbitrary. For
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te[0,1) consider the Darboux problem
Zxy =g(xa Y, Z)

(5
z(x, t)=u(x’ t), z(t, y) =u(t, Y), (x,y)€0Q,

where Q,=[t,1] x [t, 1]. Denote by z®:Q,— R? the (unique) solution of problem (5).
For te[0,1) define u®:Q—R? by

Z(')(xa y)’ if (x9 y) € Qt

“m("’”z{u(x,y), i (%) €0\,

Moreover, set u'")=u. Observe that u®=u,.
We claim that for every te[0,1], u® is a solution of problem (3). Indeed, let te[0,1].
For every (x, y) e Q\Q, we have

u(x, y) = u(x, y) = $(x) + (y) — $(0) + g iv(é, n)dé dn, ©6)

where o(&,n) e F(&,n,u®™(&,n)) for a.a. (&,7)e Q\Q,.
For (x,y)eQ, we have

u®(x, y) =290x, y) =ulx, 1) + u(t, y) — u(t, ) + J'f j v(&,n) dedn, (7

where v(&,n)=g(¢, 7, 2UE, n) € F(&, 1,2%¢,n)) and so vYE m)e F(&,n,uE,n) for aa.
(&, n)eQ,. From (7), by virtue of (6), we have

0%, 3) = )+ §(0 —$0)+ | | o) d d
+90+90)— 90 + [ [ mdedn
— 00— Y()+ #O — | [u&m dedn+] & m dean
=900 +¥()—9(0)+] [ & A& ) + 20 E0O(E m) dd,

where y, denotes the characteristic function of A4. It follows that «' is a solution of (3).
Thus u®e{ for each ue{; and tel.
Now define the function h:I x {z—{y by h(t,u)=u®. Suppose that I x{; is given the
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metric max{[t; —t,),|ju; —wa|[}, (b, uy), (tr ) €I x Lp  (JJuy —uy]| =maxy yyeolus(x, y)—
u5(x, y)|). We are going to prove that A is continuous.

Under our assumptions {; is a bounded subset of C(Q, R, thus there is a constant
m>0 such that for every ue(, one has u(x,y)emB, (x,y)€ Q. Since the set Q xmB is
compact and convex, the restriction of the function g to @ xmB is lipschitzian with
some constant L> 0.

Let (f,d)elIx{r. Let e>0 and choose 0<d<e/(7el). Let >0 be so that
[fac(& m)dEdn <5, where A={(x,y)eQ|x,ye[f—1,F+1]}. Let (t,u)el x{; be such that
|t—| <7, ||u—i|| < 6. Let t> (the proof is similar when ¢ <?).

Suppose (x,y) € Q,. As

(e, ) (x, y) = (x, &) + u(t, y) —ult, x)+ﬁg(c, . h(t, u) (&, ) d& dn

H(E, 8)(x, y) = i(x, ) +i(E, y) —i(F, f)+fjg(é, n, h(E, B)(&, ) d& dr ®)

we have

[z, w)(x, y) — h(E, @) (x, y)| < |ulx, ) —(x, B)| + |u(z, y) —i(E, y)|

+|u(t, ) —ii(E, ] + jA §al&,n)d¢dn
+ Tl ., ) ) — 08, m, W 8 )|

<26+20+25+8+L | [|ht, w)(€, m) — h(, (&, )| d& dn.

From this, using Gronwall’s inequality, we obtain |h(t, u)(x, y) — h(f, @)(x, y)| < 7deL <.
Suppose (x, y)e Q\Q,. As h(f,#)(x, y) is still given by (8) while

(e, )06, )= ) = (e, )+ ull, ) = u(E, D+ | | 806 n, (&, m) d€ dy

we have
[h(t, ) (x, y) — h(E, @) (x, y)| £ |u(x, D) — di(x, )| + |u(E, y) —(E, y)|

+|u(E, F) — HE, F)| + 2 ([ &,m) dEdn <5+ 5+ +26 =56 <e.
A

Finally, if (x,»)eQ\Q; we have |h(t,u)(x,y)—h(,D)(x,y)|=|u(x,y) —i(x, y)| <5 <e.
Hence |h(t, u)(x, y) — h(E, B)(x, y)| <& for every (x, y)€Q, which implies ||n(z, w) — h(E, B)|| <.
This shows that h is continuous at (t,#). As (,4) is arbitrary, h is continuous on I x (.
Moreover, h(0,u)=u, and h(l,u)=u, for every ue{,. Hence {; is contractible and the
proof of Lemma 4 is complete.
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3. Proof of the Theorem

By Lemma 1, for every keN there is a locally lipschitzian function g,:Q x R*—>R?
such that

1
{f supley(&n2)— f(&m,2)| dE dn <.
Q zeR4

For neN define 1,:0—[0, + 0] by

j'.’n(xa )’) = k; su)g |gk(x’ Y, Z) _f(x’ Vs Z)l

2nz

Note that each 7, is integrable on Q. Consequently there is a null set Q, = Q such that
Z.(x, y) is finite for every (x, y) € Q\Q,, and every ne N. Define 1,:0 —R by

Lxy), i (x,5)€Q\Qo

(X, y) = {0, if (x,y)eQ,.

For neN define the multifunction G,:Q x R*> %" by
G(x,y,2) = f(x,y,2) + 4,(x,y) B.

Clearly G, satisfies hypotheses (H;), (H,), (H;) (the latter with a(x,y)+ A,(x,y) in the
place of a(x, y)). Moreover g,(x, y,z) € G,(x, y,z) for each (x, y,z2) e (Q\Q,) X R%.
Consider the problem

2, €Gylx,y,2)
9
z2(x,00=¢(x),  z(0,y)=y(y).

Let {; denote the set of all solutions z:Q—R? of problem (9). By virtue of Lemma 4
(with g=g,, F=G,) the set {; is nonempty, compact and contractible. Clearly
{6,286,2--., for Gy(x,y,2) 2 Gyx,y,2)>... for each (x,y,z)eQ x R%. By Lemma 2,
{= N&y (g, is an Ry-set in C(Q, R%). To finish the proof it suffices to show that {,=(.

It is obvious that { ch. To see the reverse inclusion suppose that zel. Let neN.
For each (x, y)e Q we have

2%, )= $() + Y(3) — $(0) + j (fy)v..(ﬁ, n)dé dn,

where v,(&,meG, (& n,2(E,n) for aa. (§,n)eQ. Hence v,(&,n)=r (5 n, 2(Em)+win),
where w, is a measurable function satisfying w,(& n)el(E,n)B for aa. (&,n)eQ.
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Consequently we have

2(x, ) — $(x) — Y (») + $(0) — j jf(é, n 2(&, ) d& dn

xy 1
é]]ln(é,n)dédnéz,,_l-
00

Since ne N is arbitrary, we conclude that ze(,. This completes the proof.
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