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ON THE STRUCTURE OF THE SET OF SOLUTIONS OF THE
DARBOUX PROBLEM FOR HYPERBOLIC EQUATIONS

by F. S. DE BLASI and J. MYJAK

(Received 22nd October 1984)

1. Introduction and main result

Consider the Darboux problem

(1)

where (f>,\j/:l^Rd (/ = [0,1]) are given absolutely continuous functions with </>(0) = i
and the mapping f.Qx Rd-*Rd (Q = I xl) satisfies the following hypotheses:

(Aj) /( . , .,z) is measurable for every zeRd;
(A2) f(x, y,.) is continuous for a.a. (almost all) (x, y) e Q;
(A3) there exists an integrable function a:Q-»[0, +oo) such that \f(x,y,z)\^ct(x,y) for

every (x,y,z)eQxRd.

Let C(Q, R4) denote the Banach space of all continuous functions from Q to Rd

endowed with the metric of uniform convergence.
By a solution of problem (1) we mean a function zeC(Q,Rd) satisfying

j {z(x, y) = c(>(x) + My) - </>(0) + j { / ( £ , n, z(£, r,)) dl; dr,,

for every (x, y) e Q.
The purpose of this note is to prove the following

Theorem. Let f:QxRd-*Rd satisfy (AJ, (A2), (A3). Let 4>,4i:l^Rd be absolutely
continuous functions with <p(0) = t/>(0). Then the set C,f of all solutions of the problem (1) is
an Rg-set in C(Q, Rd).

Recall that a subset of a metric space is called an R -̂set if it is the intersection of a
decreasing sequence of compact absolute retracts. It is known that an Rd-set is acyclic,
in particular it is nonempty compact and connected.

Hukuhara [5] and Aronszajn [1] have proved that the set of solutions of the Cauchy
problem x'=f(t,x), x(0) = xo, where f:IxRd-*Rd is continuous and bounded, is an R}-
set in C(I, R"1). Recently, by using topological degree arguments, Gorniewicz and
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Pruszko [4] have established an analogous result for the Darboux problem (1), under
the main hypothesis that / be continuous with respect to all variables. In this note the
set of solutions of problem (1) is shown to be an Rd-set also when / satisfies hypotheses
of Caratheodory type. Our approach is different from that used in [4].

Remark 1. The statement of the theorem remains true when the condition (A3) is
replaced by the following one: there exist integrable functions a, P-Q-*[0, +oo) such
that |/(x,y,z)\£a(x,y) + p(x,y)\z\ for each (x,y,z)eQxRd.

2. Preliminaries

The following lemma can be proved as in [2, Lemma 2].

Lemma 1. Let f.Qx Rd-*Rd satisfy (A^, (A2), (A3). Then for every £>0 there exists
a locally lipschitzian function g:Qx Rd-*Rd such that

Recall that a subset A of a metric space is called contractible if there exist a point
xoeA and a continuous function h:IxA-*A such that /i(0,x) = xo and fc(l,x) = x for
each XEA.

Lemma 2 [6]. Let A be a nonempty compact subset of a metric space X. Then A is an
Ryset in X if and only if A is the intersection of a decreasing sequence of compact
contractible subsets of X.

Let Lt(Q, Rd) be the Banach space of the (equivalence classes of) Lebesgue integrable
functions v:Q-*Rd, with the norm JJQ|U(£,r\)\d£,dn.

Lemma 3. Suppose that a sequence {vn} a Lt(Q, Rd) satisfies:

(i) \vJLx, y)\ ̂  oc(x, y) for almost all (x, y) e Q (a e Lt(Q, R"));
(ii) for each (x,y)eQ the sequence

{]\v{tn)dld\ (2)

joo " '* ''j

is Cauchy.

Then {vn} is weakly Cauchy in L^QiR*).

Proof. Clearly {i;n} is norm bounded in Li{Q,Rd). Let £ be a measurable subset of
Q. Let e>0. Let P <= Q be an elementary set (that is a set which can be expressed as a
union of a finite number of pairwise disjoint rectangles) such that \\E\p^{^, n)d£dn<e/4
(EAP = (E\P)<u(P\E)). As P is an elementary set, by virtue of (ii) one can find an noeN
such that |JJj>(fm(<5, t\) — vn(£, n))d^dri\<e/4 if m,n^n0. Then, by an easy computation,
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one obtains

| |K,(<U)-

+

vn(Z,r,))dZdn

JJ(»« .»? ) -
p

^ 2 | | a(^, r;

un(ij, ^)) d^ d^

)dUn

4 2

(m,n^.n0), which shows that the sequence {JJ£vn(£,rj)dt;dn) is Cauchy. By using [3,
Theorem IV.8.7] one can complete the proof.

Denote by X the family of all nonempty compact convex subsets of Rd. Recall that a
multifunction G:Q->JT is said to be measurable if the set {(x,y) e Q\G(x,y) n U=fc0} is
(Lebesgue) measurable for every open subset U of Rd. A multifunction G: Rd-*Jf" is said
to be upper semi-continuous (u.s.c.) if the set {ueRd\G(u) <= U} is open for every open
subset U of Rd.

Consider the (multivalued) Darboux problem

zxyeF(x,y,z)
(3)

where the functions </>,ij/:I-^Rd are as above, and the multifunction F:QxRd-*jf
satisfies the following hypotheses:

(HJ F(.,.,z) is measurable for every zeRd;

(H2) F{x, y,.) is u.s.c. for a.a. (x, y) e Q;

(H3) there exists an integrable function a:Q->[0, +oo) such that
sup{|M|IuEF(x,y,z)}^a(x,y) for every (x ,y ,z )eQxR d .

By a solution of (3) we mean a function zeC(Q,Rd) such that there exists an
integrable function v:Q-*Rd satisfying

v(x, y) e F(x, y, z(x, y)) for a.a. (x, y) e Q,

and

z(x, y) = 0(x) + ^r(y) - <K0) + J J »({, IJ) d^ d^ for every (x, y) e Q.
oo

We denote by fi the Lebesgue measure in R2 and by B the unit closed ball in Rd.

Lemma 4. Let F:QxRd^Jf satisfy (HJ , (H2), (H3) and /er 0,4/:I->Rd be absolutely
continuous functions with 0(O) = i/'(O). In addition, suppose that there exists a locally
lipschitzian function g:QxRd->Rd such that g(x,y,z)eF(x,y,z) for each
(x,y,z)e(Q\Q0)xRd, where M6o)=0- Then l^e set (F of all solutions of problem (3) is a
(nonempty) compact contractible subset of C(Q, Rd).
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Proof. Since the solution of problem (3) (with g in the place of / ) belongs to (F, one
has that (F =/= 0.

Let us show that £F is compact. To this end consider any sequence {zn} c £F. Taking
into account the uniform continuity of (j>, \jt and assumption (H3) one can easily show
that the functions zn are equicontinuous and equibounded. By Ascoli-Arzela's Theorem,
passing to a subsequence (without change of notation), we can assume that {zn}
converges uniformly on Q, to a function z0 e C(Q, Rd). For each n e C*J we have

x y

zn(x, y) = (j>{x) + My) ~ <MP) + J J vM, n) ̂  dr,,

where i>n(£, rj) e F{£,, r\, zn(£, rj)) for a.a. {£,, r\) e Q. From (4) it follows that the sequence (2)
converges for each (x, y) e Q. Since L1(Q, Rd) is weakly complete, by Lemma 3 there
exists a VQ^L^Q, Rd) such that {vn} converges weakly to v0. By Mazur's Theorem there
exists a sequence {wn} of finite convex combinations of vn's

k(n)

i^O \ 1=0

such that

as

Thus, passing to a subsequence (without change of notation), we can assume that
wn(x,y)->v0(x,y) for each (xzy)eQ\Q0, where MGo) = 0. Let Q => Q0, KQ) = O, be such
that for every (x,y)eQ\Q, the multifunction F(x,y, •) is u.s.c. and, moreover,
vn(x,y)eF(x,y,zn(x,y)) for n = 1,2,....

Let (x,y)eQ\Q and let e>0. Since F(x, y,.) is u.s.c. at zo(x, y), there exists no =
no(x,y,e)eN such that vn{x,y)eF(x,y,zo(x,y)) + sB for every n^n0. This implies
wn(x,y)eF(x,y,zo(x,y)) + EB for n^n0. From this we deduce that t;0(x,y)eF(x,y,z0(x,}>)).
Since (x, y) is arbitrary in Q\Q it is proved that vo(x, y) e F(x, y, zo(x, y)) for a.a. (x, y) e Q.
Moreover, from (4) for each (x,y)eQ we have

1 = 0 00

and so, letting n-> + oo, we get

zo(x, y)=<Kx) + My) T 0(0)+11 »o(&

Hence z0 £ CF and the compactness of C,F is established.
It remains to prove that £F is contractible. Let u0 be the (unique) solution of the

Darboux problem zxy=g{x,y,z), z(x,0) = ^(x), z(0,y) = ^(y). Let UE£F be arbitrary. For
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re[0,1) consider the Darboux problem

Xyg(y)

(5)
z(x,t) = u(x,t), z(t,y) = u(t,y), (x,y)eQ,

where Qt = [t, 1] x [t, 1]. Denote by z(t):(2,-»/?d the (unique) solution of problem (5).
For te[0,1) define u{l):Q-*Rd by

u(x,y), if (x,y)eQ\Qt.

Moreover, set ua) = u. Observe that u(0) = u0.
We claim that for every te[0,1], M(" is a solution of problem (3). Indeed, let te[0,1].

For every {x, y) e Q\Qt we have

M«>(x, y) = u(x, y) = <Kx) + *(y) - 0(0) + J { v(Z, r,) d£ dr,, (6)
o o

where itf, f,) e F(£, r,, u^, r,)) for a.a. (§, rj) e Q\Qt.
For (x, _y) e Q, we have

M<(>(x, y) = z»\x, y) = u(x, t) + u(t, y) - u{t, t) + ]j v«\Z, r,) d£ dr,, (7)
I t

where v{t\^r,)=g{i,r,,z^(i,r,))eF(i,r,,z^,r,)) and so ««(& »j) e F(& IJ, ««(& i;)) for a.a.
(£,rj)eQt. From (7), by virtue of (6), we have

u<"(x, y) = 0(x) + 4,{t) - 0(0) + } } v(£,
0 0

- 4>(t) - m + 0(0) - J J v(t, r,) dt, dr, + J J i/<>(£, r,) dl; dr,
0 0 ll

= 0(x) + «A(y) - 0(0) + J1 [xno,(Z,

where %A denotes the characteristic function of A. It follows that w(() is a solution of (3).
Thus M(oeCF f°r e a c n "£CF a nd t e / .

Now define the function /I : /X£F->CF by /i(t, u) = u('\ Suppose that Ix£F is given the
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metric max{|t1-f2|,||«i-W2||}» (ti,ul),(t2,u2)el x(F (||u1-u2|| = max(XirteQ|M1(x,3;)-
U2(x> y)\)- We are going to prove that h is continuous.

Under our assumptions (F is a bounded subset of C(Q, Rd), thus there is a constant
m > 0 such that for every u e C,F one has u(x, y) e mB, (x, y) e Q. Since the set Q x mB is
compact and convex, the restriction of the function g to Q x mB is lipschitzian with
some constant L>0.

Let (F, u)e/x£F. Let e>0 and choose 0<<5<e/(7eL). Let T > 0 be so that
$$A(x(£,ri)d{,dri<5, where A = {(x,y)eQ\x,yelt-zJ+T^}. Let (t,u)eIxCF be such that
\t — f| <T, ||u — u||<(5. Let t>f (the proof is similar when £<f).

Suppose (x, y) e Q,. As

h(t, u)(x, y) = M(X, t) + u(t, y)-u(t, t) + ]\g(Z, r\, h(t,«)(

fc(f, fi)(x, y) = u(x, f) + u(f, y) - u(f, f) + ) )&, r,, h(t,u)(Z, ti) dl; dr, (8)

r r

we have

\h(t, u)(x, y) -h{l, u)(x,y)\ ^ \u(x, t) -u(x, f)| + \u(t, y) - u(I, y)\

]]<2d + 25 + 25 + d + LJl\h(t,um,r,)-h(t,u)(i,r,))\d^dr,.
t t

From this, using Gronwall's inequality, we obtain \h(t,u)(x,y) — h(I,u)(x,y)\^7deL<e.
Suppose (x,y)eQl\Ql. As h(l,u)(x,y) is still given by (8) while

h(t, u)(x, y) = u{x, y) = u(x, F) + u(t, y) - u(F, T) + J \g{^, r\, u{i, r,)) d^ dr,

T t

we have

\h(t, u)(x,y) - h(t, u)(x, y)\ ^ \u(x, F) -u(x , f)| + |w(F,y) -u(f, y)\

Finally, if (x,y)eQ\QT we have \h(t,u)(x,y)-h(l,u){x,y)\ = \u(x,y)-u(x,y)\<5<s.
Hence \h(t,u)(x,y) — h(I,u)(x,y)\<e for every (x,y)eQ, which implies ||/i(£,u)-fi(f,ii)||g£.
This shows that h is continuous at (t, w). As (F, u) is arbitrary, h is continuous on / x £F.
Moreover, /j(0, u) = u0 and h(l,u) = u, for every ueC,F. Hence Cf is contractible and the
proof of Lemma 4 is complete.
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3. Proof of the Theorem

By Lemma 1, for every keN there is a locally lipschitzian function gk:Q xRd-+Rd

such that

For n e N define Xn: g->-[0, + oo] by

fax, y) = X SUP \gk(x, y, z) -fix, y, z)\.
kZnzeRd

Note that each Xn is integrable on Q. Consequently there is a null set Qo c Q such that
Xn(x,y) is finite for every (x,y)eQ\Q0, and every neN. Define ln:Q,—*U by

w v \fax,y), if (x,j;)6Q\Qo
^ ' ^ - J O , if {x,y)eQo.

For nef^J define the multifunction Gn:Q xR^Jf by

Clearly Gn satisfies hypotheses (Hi), (H2), (H3) (the latter with tx(x, y) + An(x, y) in the
place of <x(x, y)). Moreover gn(x, y, z) e Gn(x, y, z) for each (x, y, z) e (Q\Q0) x Rd.

Consider the problem

zxyeGn(x,y,z)

(9)

Let CG, denote the set of all solutions z:Q-*Rd of problem (9). By virtue of Lemma 4
(with g=gn, F = Gn) the set CG, is nonempty, compact and contractible. Clearly
CG, => CG2 =>•••, for Gx(x, y, z) => G2(x, y,z) =>... for each (x, y,z)eQx Rd. By Lemma 2,
£= f]n=i CG, is an R^-set in C(Q, R"). To finish the proof it suffices to show that Cf = C

It is obvious that C/^T- To see the reverse inclusion suppose that zef. Let n e N .
For each ix,y)sQ we have

z(x, y) = 4>{x) + *(y) ~ #>) + J f ^(^, f/) dZ dt,,
oo

where i ) n ( ^ / | ) e G i ^ , z ( ^ ) ) for a.a. (^,»/)6Q. Hence vn{E,,r\)=fit,t},z(E>,ri)) + wn{E,,rj),
where wn is a measurable function satisfying wni^,rj)e?.n(^,t])B for a.a. {£,,rj)eQ.
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Consequently we have

x y

z(x, y) — (p(x) — ij/(y) + (j)(0) — J J / (£ , r\, z(£, rj)) d£, dr\

r r 1

^ J J /.„{£,,rf)d£dr\^ _ t .
oo 2

Since neN is arbitrary, we conclude that ze(,f. This completes the proof.
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