Published online by Cambridge University Press: 20 January 2009
In [1], R. L. Goodstein has extended some well-known theorems on functions and equations in a Boolean algebra to the case of a distributive lattice L with 0 and 1. The purpose of this paper is to prove that most of Goodstein's theorems, as well as some additional results, are still valid in the case when L is not required to have least and greatest elements.