Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:25:56.011Z Has data issue: false hasContentIssue false

On bounding the Stückrad-Vogel multiplicity

Published online by Cambridge University Press:  20 January 2009

L. O'Carroll
Affiliation:
Department of MathematicsUniversity of EdinburghJames Clerk Maxwell Building Mayfield Road Edinburgh EH9 3JZ
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a classical result of Nagata, Achilles, Huneke and Vogel gave a criterion for the Stückrad-Vogel multiplicity to take the value one. We use Huneke's extension of Nagata's theorem to give a necessary condition for the Stückrad-Vogel multiplicity to have an arbitrary preassigned bound, under certain conditions. A usable criterion of multiplicity n results (given mild hypotheses). We also revisit some basic results in the Stückrad-Vogel theory in the light of the behaviour of tensor products of affine primary rings, and also revisit some arguments of Achilles, Huneke and Vogel from the point of view of fibre rings.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1991

References

REFERENCES

1.Achilles, R., On the intersection multiplicity of improper components in algebraic geometry, Beiträge Algebra Geom. 19 (1985), 113–129.Google Scholar
2.Achilles, R., Huneke, C. and Vogel, W., A criterion for intersection multiplicity one, Nagoya Math. J. 100 (1985), 4963.CrossRefGoogle Scholar
3.Flenner, H., On imbedded components of improper intersections in projective space, Arch. Math. 48 (1987), 533537.CrossRefGoogle Scholar
4.Fulton, W., Intersection Theory (Springer-Verlag, Berlin-New York, 1984).CrossRefGoogle Scholar
5.Van Gastel, L., Excess Intersections (Thesis, Rijksuniversiteit Utrecht, 1989).Google Scholar
6.Grothendieck, A., Éléments de Géometric Algébrique (Inst. des Hautes Études Sci. (Publ. Math. No. 24), Bures-sur-Yvette, 1965).Google Scholar
7.Herrmann, M., Ikeda, S. and Orbanz, U., Equimultiplicity and Blowing-Up (Springer-Verlag, Berlin-New York, 1988).CrossRefGoogle Scholar
8.Huneke, C., A remark concerning multiplicities, Proc. Amer. Math. Soc. 85 (1982), 331332.CrossRefGoogle Scholar
9.Matsumura, H., Commutative Ring Theory (Cambridge University Press, Cambridge, 1986).Google Scholar
10.Nagata, M., Local Rings (Interscience Publishers, New York, 1962).Google Scholar
11.O'Carroll, L., On a theorem of Huneke concerning multiplicities, Proc. Amer. Math. Soc. 99 (1987), 2528.CrossRefGoogle Scholar
12.O'Carroll, L. and Qureshi, M. A., Primary rings and tensor products of algebras, Math. Proc. Cambridge Philos. Soc. 92 (1982), 4148.CrossRefGoogle Scholar
13.Samuel, P., Multiplicités des composants excédentaires d'intersection, C.R. Acad. Sci. Paris 228 (1949), 158159.Google Scholar
14.Sharp, R. Y., Simplifications in the theory of tensor products of field extensions, J. London Math. Soc. (2) 15 (1977), 4850.CrossRefGoogle Scholar
15.Stuckrad, J. and Vogel, W., An Euler-Poincaré characteristic for improper intersections, Math. Ann. 274 (1986), 257271.CrossRefGoogle Scholar
16.Vogel, W., Lectures on Results on Bézout's Theorem (Lecture Notes, Tata Institute, Springer-Verlag, Berlin-New York, 1984).CrossRefGoogle Scholar
17.Watanabe, K., Ishikawa, T., Tachibana, S. and Otsuka, K., On tensor products of Gorenstein rings, J. Math. Kyoto Univ. 9 (1969), 413423.Google Scholar
18.Weil, A., Foundations of Algebraic Geometry (Amer. Math. Soc., Providence, R.I., 1946).CrossRefGoogle Scholar
19.Zariski, O. and Samuel, P., Commutative Algebra Vol. I (Springer-Verlag, New York, 1958).Google Scholar
20.Zariski, O. and Samuel, P., Commutative Algebra Vol. II (Springer-Verlag, New York, 1960).CrossRefGoogle Scholar