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ON BOUNDING THE STUCKRAD-VOGEL MULTIPLICITY

by L. O'CARROLL

(Received 9th June 1989; revised 16th September 1989)

Using a classical result of Nagata, Achilles, Huneke and Vogel gave a criterion for the Stiickrad-Vogel
multiplicity to take the value one. We use Huneke's extension of Nagata's theorem to give a necessary
condition for the Stiickrad-Vogel multiplicity to have an arbitrary preassigned bound, under certain
conditions. A usable criterion of multiplicity n results (given mild hypotheses). We also revisit some basic
results in the Stiickrad-Vogel theory in the light of the behaviour of tensor products of affine primary rings,
and also revisit some arguments of Achilles, Huneke and Vogel from the point of view of fibre rings.

1980 Mathematics subject classification (1985 Revision): Primary 14A05, 14C17. Secondary 13A17, 13H15.

1. Introduction

In [2], Achilles, Huneke and Vogel investigated the situation where the Stiickrad-
Vogel multiplicity takes the value one. The purpose of this note is to extend their main
result, to set it in a wider context and to make some additional remarks on some of the
arguments in [2].

We first recall the basic context in which the Stiickrad-Vogel multiplicity theory
operates. To do this, let K be an algebraically closed field and let X and Y be pure-
dimensional subschemes of n-dimensional projective space P* over K. By definition,
then, the primary ideals belonging to the homogeneous ideal I(X) of /C[xo,...,xn],
which defines X, all have the same dimension; a similar statement holds regarding the
homogeneous ideal I(Y) of K[xo,...,xn] which defines Y. We consider isolated (or, in
other words, irreducible) components C of X n Y (i.e. C is defined by an associated
prime ideal of the homogeneous ideal I(X) + I{Y)) and we focus on the intersection
multiplicity of X and Y along C.

In the case where C is a proper component (i.e. where dim C = dim X + dim Y—n) a
criterion for this multiplicity to take the value one is given as a statement on
transversality (see, e.g. Weil [18, Chapter 6, Theorem 6]). An algebraic version has been
given by Nagata [10, (40.6)]; subsequently, the geometrical form was revisited by Fulton
[4, Propositions 7.2 and 8.2]. Under the additional hypothesis that the ring concerned
should contain a field, Huneke [8] generalized Nagata's algebraic result to give a
criterion for bounded Hilbert-Samuel multiplicity (there was an initial important
contribution by Ikeda). This additional hypothesis was needed to ensure that the
homological conjectures held, and indeed in [11] (where a slightly amended form of
Huneke's result is stated) the homological conjectures were seen to enter into Huneke's
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proof in an essential way. For applications of Huneke's theorem, see [8] and [7,
pp.429ff.].

In a parallel development, Achilles, Huneke and Vogel [2] gave a criterion for
intersection multiplicity one in the case where the component C is not necessarily
proper, using the intersection theory of Stiickrad and Vogel. See [2] for further
background on such a criterion and for a sketch of this intersection theory; a fuller well-
motivated account is given in [16] (also, cf. [13]). The Stiickard-Vogel theory can
behave in the "expected" way (see [15, 16], for example), but subtleties can arise (see [3,
16], for example). A fascinating discussion of the links between various intersection
theories, including those of Stiickrad and Vogel and of Fulton and MacPherson, is
given in [5].

Note that the dimension of an ideal is, by definition, the Krull dimension of the
corresponding factor ring.

This paper, a revised version of the original, has benefitted greatly from helpful and
informative discussions with D. Costa, T. Ogoma and N. V. Trung (visiting the U.K.),
and (at Halle) R. Achilles, P. Schenzel and W. Vogel—my thanks to them all. Financial
support from the Edinburgh and London Mathematical Societies, and from the Royal
Society, is gratefully acknowledged.

2. Stuckrad-Vogel multiplicity

We give a quick precis of some of the main features of Stiickrad and Vogel's theory
and of those properties of it which are of use here, borrowing heavily from [2] to do so.

Let X and Y be pure-dimensional subschemes of P"K with defining ideals I(X) and
I(Y), respectively, in /C[xo,...,xn] = :i?;c, where K is algebraically closed. Introduce a
second copy K[yo,...,yn'] = :Ry of Rx and denote by I{Y)' the ideal in Ry corresponding
to I(Y). Consider the polynomial ring R: = K[xo,...,xn, y0,...,yn'] and the ideal
c = (x0—yo>...,xn — yn)R. Note that c is a prime ideal of height n + 1 and that it is the
kernel of the natural retraction of R onto Rx which maps j>, to xh O^i^n. In fact c is
the defining ideal of the diagonal in A|"+2, which is an irreducible subvariety.

Furthermore, introduce new independent variables uim over K, O^i, m^n. Let K be
the algebraic closure of K(u00>...,unn). Put

^: = K[xo,...,xn,j;o,...,3;n] and /,:= £ uim(xm-ym)
m = 0

(in R), O^ign.
Let C be an isolated component of X r\Y with defining prime ideal /(C) of dimension

j . The Stuckrad-Vogel theory constructs a well-defined primary ideal belonging to the
prime ideal (I(C) + c)R such that the intersection multiplicity j(X, Y;C) of X and Y
along C is given by the length of this primary ideal.

Set

S: = dimension of /(X) + /(Y)' in R
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and d: = dimension of I(X) + /(Y) in Rx.

Take the linear forms /0,...,/a_,!_!; put

(I(X)R + /(Y)'R) _!: = I(X)R + /(Y)'R

and

for O^k^d—d — l, where U(..) is the intersection of all the highest dimensional primary
components belonging to the ideal (. .)• Furthermore we put

and, if j<d,

as: = intersection of all primary ideals belonging to U(as-l + ls_d+s_2 R) such that
cR is not contained in their associated primes, 1 ^ s ̂  d — j .

Finally, we set

j(X, Y;C): = length of {ai-J+la-J-l • R)iHC)+C)R-

Then, if C is a proper component,j(X, Y; C) equals i(X, Y; C), where the latter is Weil's
intersection symbol.

Set

Then cA is primary to the maximal ideal of the local ring A. Most importantly for our
purposes, we have the following fact (see [2, p. 53, Remark]):

j{X,Y;Q = eo{cA,A), (•)

where the latter is the usual Hilbert-Samuel multiplicity symbol.

3. Remarks

In this section, we wish to make some remarks about the ring A above and about the
corresponding ring
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These rings are the central objects of concern in the basic results [16, (2.3) (and (1.47))]
and [2, Lemma 3]. Our aim is to elucidate various aspects of these results and their
proofs. We use without mention the basic properties of ®K (see [19, 20, 12] for
example).

(1). Recall that I(X) is an ideal, all of whose associated primes have the same
dimension, and that I(Y) shares analogous properties. Hence RJI(X) is a subdirect
product of affine primary rings D, over K, all having the same dimension, and RJI( Y) is
also a subdirect product of affine primary rings Dj over K, all having the same
dimension. Set

A': = (RX/I(X))®K(RJI(Y));

it follows that A' is a subdirect product of the Dt®KDj. By Noether's Normalization
Lemma, each of these has the same dimension; moreover, each is a primary ring (see
[12, Theorem 1] and [19, p. 198, Cor. 1]). Hence A' is unmixed in the Stuckrad-Vogel
(or Zariski-Samuel) sense; i.e. all prime divisors of zero of A' have the same dimension.
Since

the same properties hold for A, by the catenary properties of R. Thus, using
non-reduced structures, A is the local coordinate ring of the join-variety of X and Y in
P | n + 1 at the subvariety defined by I(C) + c; the join-variety itself is defined by the
homogeneous unmixed ideal I{X) + I(Y)'. Of course, in the light of (*), this statement is
a crucial one. By [20, Chapter VII, § 11], similar statements can be made about A (cf.
[2, pp. 51-53]). Clearly the hypothesis that K be algebraically closed could be weakened
to one concerning separability (see [19, p. 195, Theorem 39]).

Geometrically speaking, what we have shown is that the components of the join of X
and Y consist of the various joins of the components of X and Y (non-reduced
structures again being considered).

It follows from [10, (34.10)] (and the catenary properties of R) that A and A are
unmixed in the sense of Nagata (cf. [10, p. 82]); it is unmixedness in the sense of Nagata
which enters into his criterion for multiplicity one [loc. cit., (40.6)]. This is a rather
unfortunate clash of terminology.

(2). Turning now to the proof of [2, Lemma 3] (see p. 53 there), the authors note that
the natural map

is a local flat homomorphism with fibre F at the maximal ideal, where

This follows quickly on noting that the flat homomorphism K->Ry/I(Y)' yields the flat
homomorphism
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by base change.
It will elucidate the proof of [2, Lemma 3], and especially that of the claim on p. 54

there, to remark that, further, for the same reasons as above, there is a local flat
homomorphism

(Ry/I(Y)')I(cy->F

with fibre G over the maximal ideal, where

is a localization of the tensor product of fields

here, I{C)' is (of course) the copy of I(C) in Ry and one notes that

i(Q+c=i(cy+c,

since I(C)' maps onto I(C) under the natural retraction of R onto Rx, which has kernel
c. Now G is Gorenstein [17; Part II, Proposition 2], and even regular [6; (6.7.4.1)]
(again, a hypothesis concerning separability suffices for the latter conclusion); one is
now in a position to use standard results on fibres of flat morphisms [9, §23]. (See [14]
for a more general version of the two results quoted above in connection with the
structure of G. Also, see [9, §§21, 23] for a brief discussion of related results by
Avramov. Related ideas appear in [1].)

4. Bounding the multiplicity

We now wish to extend the main theorem of [2]. This we do in the obvious way, by
replacing the use of Nagata's criterion ([10, (40.6)]) in [2] by an appeal to Huneke's
theorem [8]. As is clear from [2, pp. 53, 55], the hypothesis that the multiplicity equal
one is a very strong one, and in particular implies reducedness of the intersection at the
pertinent component. In our more general context, we will have to assume reducedness
a priori. The strength of the hypothesis of multiplicity one can be seen as well, in the
"classical" context, in the proof of [10, (40.6)].

Before giving the theorem, we introduce the following piece of terminology. A local
ring (B, n) is said to be analytically Sn if the n-adic completion B satisfies the Serre
Sn-condition, i.e. if

depth Bp ̂  inf (n, height p), V p e Spec B.
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Thus an analytically normal local ring is analytically S2- Moreover, as is remarked on
[2, p. 55], the ring A above is already analytically Slt since this follows from the fact
that it is unmixed in the sense of Nagata, which we know is indeed the case (cf. Remark
1 of Section 3 above). Note also, by [9, Theorem 23.9 (iii) and §32], that A is
analytically Sn if and only if it satisfies Sn.

Theorem. Let X and Y be pure-dimensional subschemes of P"K. Let C be an isolated
component of X n Y such that X r\Y is reduced at C. Suppose that there exists a positive
integer n such that A is Sn and j(X,Y;C)^n. Then (Rx/I(X))nc) and (RX/I(Y))HC) are
Cohen-Macaulay local rings.

Proof. By (*), j(X, Y;C) = eo(cA,A). Since Xn Y is reduced at C we have cA = m,
where m denotes the maximal ideal of A. It follows from Huneke's theorem [8,11] (see
the above remarks) that A is Cohen-Macaulay, and the result is now immediate from
[2, Lemmas 3 and 4].

Remarks. (3) Conversely, if (RJI(X))HC) and (RJI( Y))IiC) are Cohen-Macaulay, it
follows from [2, Lemmas 3 and 4] that A is Cohen-Macaulay and therefore A is Sn, for
alln.

(4) Suppose that (Rx/I{X))nC) and (RX/I(Y))I(C) are normal domains (i.e. suppose X
and Y are normal irreducible varieties along C). As in Remark 1 of Section 3 above,
(RJI(X))HC)®K(RX/I(Y))HC) is a domain (cf. [19, p. 198, Cor. 1]). By [10, (42.10)], it is
also a normal domain. Hence its localization A is normal as well, and so is S2. In fact, it
follows from [6,(6.7.3)] that if (RJI(X))I(C) and (RJI( Y))HC) satisfy Sn then so does A.
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