No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
We shall call a finite semigroup S arithmetical if there exists a positive integer N and a monomorphism μ of S into the multiplicative semigroup RN of the ring of residue classes of the integers modulo N. In 1965 P. C. Baayen and D. Kruyswijk [1] posed the problem' Is every finite commutative semigroup arithmetical? ' The purpose of this paper is to answer this question.