Published online by Cambridge University Press: 20 January 2009
For bounded operators, the theory of the joint numerical range has been developed by various authors [1,2,3,4,5]. Especially, the properties of commuting normal n-tuples are discussed in detail. Our purpose here is to show that many results in the above references still hold in the case of unbounded normal operators (see Theorem 2.3, Corrollary 3.5, Theorem 4.1, Theorem 4.2). Besides, the operator algebras are closely related to the theory of joint spectrum and joint numerical ranges in the boundedcase (cf. [1,3]). How about unbounded operators? It seems that one must consider unbounded operator algebras. Some work has been done in this direction for the joint spectrum of unbounded normal operators [9]. In the last section of this paper, we provide some intimate relations between the joint numerical range and the unbounded operator algebras for unbounded normal operators.