Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T07:09:19.558Z Has data issue: false hasContentIssue false

Homomorphism theories for universal algebras

Published online by Cambridge University Press:  20 January 2009

Hans-Jürgen Hoehnke
Affiliation:
Deutsche Akademie der Wissenschaften Zu Berlin, Forschungsgemeinschaft, Institut für Reine Mathematik.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well-known that a homomorphism ø(AB) between groups A and B induces a homomorphism ø*(ZAZB) between the corresponding group rings ZA and ZB over the ring of integers Z. The identical congruence O on B and the unit element eB of B can be characterised by the equations xy = 0 and x–eB = 0 (x,y ∈ B) respectively. Similarly the congruence Γø corresponding to ø and the corresponding normal subgroup of A are

and {xA1 = A,(xeA)ø = 0} respectively.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1968

References

REFERENCES

(1) Budach, L., Struktur Noetherscher kommutativer Halbgruppen, Monatsb. Deutsch. Akad. Wiss. Berlin, 6 (1964), 8588.Google Scholar
(2) Hilton, P. J. and Ledermann, W, Homology and ringoids. I, II, III, Proc. Cambridge Phil. Soc., 54 (1958), 152167; 55 (1959), 149-164; 56 (1960), 1-12.CrossRefGoogle Scholar
(3) Hion, Y., ω-ringoids, ω-rings and their representations, Colloq. Math., 14 (1966), 367369.Google Scholar
(4) Hoehnke, H.-J., Über den Verband der Faktorobjekte (in the press).Google Scholar
(5) Hoehnke, H.-J., Das Brown-McCoysche Radikal für Algebren (in the press).Google Scholar
(6) LOSEY, G., A class of homomorphism theories for groupoids, Proc. Edinburgh Math. Soc., Ser. II, 14 (1964), 129135.CrossRefGoogle Scholar
(7) Maclane, S., Duality for groups, Bull. Amer. Math. Soc., 56 (1950), 485516.CrossRefGoogle Scholar
(8) Malcev, A. I., On the general theory of algebraic systems, Mat. Sb., 35 (77) (1954), 320 (Russian).Google Scholar
(9) Schmidt, J., Abgeschlossenheits- und Homomorphiebegriffe in der Ordnungs-theorie, Wiss. Z. Humboldt-Univ. Berlin, 3 (1953/1954), 223225.Google Scholar
(10) Schmidt, J., Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Hülle, Arch. Math. (Basel), 7 (1956), 241249.CrossRefGoogle Scholar