Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T04:08:29.699Z Has data issue: false hasContentIssue false

Functional calculi and decomposability of unbounded multiplier operators in LP(ℝN)

Published online by Cambridge University Press:  20 January 2009

Ernst Albrecht
Affiliation:
Fachbereich MathematikUniversität des SaarlandesPostfach 1150D-66141 Saarbrücken, Germany
Werner J. Ricker
Affiliation:
School of MathematicsUniversity of New South WalesP.O. Box 1Kensington, N.W.S., 2033, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is known, for each 1<p<∞, p≠2, that there exist differential operators in LP(ℝN) which are not (unbounded) decomposable operators in the sense of C. Foiaş. In this note we exhibit large classes of differential (and unbounded multiplier operators which are decomposable in LP(ℝN) and hence have good spectral mapping properties; the arguments are based on the existence of a sufficiently rich functional calculus. The basic idea is to take advantage of existing classical results on p-multipliers and use them to generate appropriate functional calculi.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1995

References

REFERENCES

1.Albrecht, E., Spektalmasβe und Funktionalkalküle auf topologischen Vektorräumen (Diplom-arbeit, Johannes Gutenberg-Universität Mainz, 1970).Google Scholar
2.Albrecht, E. and Ricker, W. J., Local spectral properties of constant coefficient differential operators. In LP(ℝN), J. Operator Theory 24 (1990), 85103.Google Scholar
3.Colojoara, I. and Foias, C., Theory of generalized spectral operators (Gordon and Breach, New York, 1968).Google Scholar
4.Dunford, N. and Schwartz, J. T., Linear operators III: Spectral Operators (Wiley-Interscience, New York, 1971).Google Scholar
5.Frunza, Şt., A characterization of regular Banach algebras, Rev. Roumaine Math. Pures Appl. 18 (1973), 10571059.Google Scholar
6.Gaudry, G. I. and Ricker, W. J., Spectral properties of Lp-translations, J. Operator Theory 14 (1985), 87111.Google Scholar
7.Hille, E. and Phillips, R. S., Functional analysis and semi-groups (American Math. Soc. Colloquium Publications Vol. XXXI, Amer. Math. Soc. Providence, R.I., 1957).Google Scholar
8.Kakutani, S., Weak convergence in uniformly convex spaces, Tôhoku Math. J. 45 (1938), 188193.Google Scholar
9.Littmann, W., McCarthy, C. and Riviere, N., L p-multiplier theorems, Studia Math. 30 (1968), 193217.CrossRefGoogle Scholar
10.Littmann, W., McCarthy, C. and Riviere, N., The non-existence of Lp estimates for certain translation invariant operators, Studia Math. 30 (1968), 219229.Google Scholar
11.Ljubic, J. L. and Macaev, V. I., On operators with separable spectrum, Mat. Sb. 56 (1962), 433468.Google Scholar
12.Stein, E. M., Singular integrals and differentiability properties of functions (Princeton University Press, Princeton, N.J., 1970).Google Scholar
13.Szlenk, W., Sur les suites faiblement convergentes dans l'espace L, Studia Math. 25 (1965), 337341.CrossRefGoogle Scholar
14.Vasilescu, F.-H., Analytic functional calculus and spectral decompositions (D. Reidel Publ. Comp., Dordrecht, and Editura Academiei, Bucureşti, 1982).Google Scholar