Published online by Cambridge University Press: 20 January 2009
It is known, for each 1<p<∞, p≠2, that there exist differential operators in LP(ℝN) which are not (unbounded) decomposable operators in the sense of C. Foiaş. In this note we exhibit large classes of differential (and unbounded multiplier operators which are decomposable in LP(ℝN) and hence have good spectral mapping properties; the arguments are based on the existence of a sufficiently rich functional calculus. The basic idea is to take advantage of existing classical results on p-multipliers and use them to generate appropriate functional calculi.