Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T01:48:16.671Z Has data issue: false hasContentIssue false

Continuity of Lie derivations on Banach algebras

Published online by Cambridge University Press:  20 January 2009

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The separating subspace of any Lie derivation on a semisimple Banach algebra A is contained in the centre of A.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1998

References

REFERENCES

1. Brešar, M., Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525546.CrossRefGoogle Scholar
2. de la Harpe, P., Classical Banach-Lie algebras and Banach Lie groups of operators in Hilbert space (Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972).CrossRefGoogle Scholar
3. Herstein, I. N., Lie and Jordan structures in simple, associative rings, Bull. Amer. Math. Soc. 67 (1961), 517531.CrossRefGoogle Scholar
4. Johnson, B. E. and Sinclair, A. M., Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 10671073.CrossRefGoogle Scholar
5. Martindale, W. S., 3rd, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183187.CrossRefGoogle Scholar
6. Martindale, W. S., 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc. 142 (1969), 437455.CrossRefGoogle Scholar
7. Miers, C. R., Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403409.CrossRefGoogle Scholar
8. Miers, C. R., Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71 (1978), 5761.CrossRefGoogle Scholar
9. Palmer, T. W., Banach Algebras and the General Theory of *-algebras. Volume I: Algebras and Banach Algebras (Cambridge University Press, 1994).CrossRefGoogle Scholar
10. Thomas, M. P., Primitive derivations on non-commutative Banach algebras, Pacific J. Math. 159(1993), 139152.CrossRefGoogle Scholar