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The separating subspace of any Lie derivation on a semisimple Banach algebra A is contained in the centre
of A.
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The Lie structure induced on a Banach algebra by the bracket [a, b] — ab — ba is of
lively interest for their intimate connections with the geometry of manifolds modeled
on Banach spaces. Many mathematics have studied Lie derivations on associative rings
[1, 5] and Lie derivations on some Banach algebras [2, 7, 8].

A Lie derivation of a Banach algebra A is a linear map D from A into itself
satisfying D([a, b]) = [D(a), b] + [a, D(b)] for all a,b e A. In this paper we study the
continuity of a Lie derivation D on an arbitrary semisimple Banach algebra A. We
measure the continuity of D by considering its separating subspace, which is
defined as the subspace 5(D) of those elements a e A for which there is a sequence
{an} in A satisfying liman = 0 and limD(an) = a. <S(D) is easily checked to be a
Lie ideal of A and the closed graph theorem shows that D is continuous if, and
only if, S(D) = 0.

Until further notice we assume that A is a unital semisimple complex Banach
algebra and D stands for a Lie derivation of A. Let Z(A) denote the centre of A.
For each a e A let ada denote the continuous linear operator ada(b) = [a, b] from
A into itself. If P is a closed ideal of A we will denote by QP the quotient map
from A onto A/P.

The next important result was essentially stated by M. P. Thomas and illustrate the
typical sliding hump argument.

Lemma 1 [10, Proposition 1.3]. Let X and Y be Banach spaces, {Tn} a sequence of
continuous linear operators from X into itself, and let {Rn} be a sequence of continuous
linear operators from Y into Banach spaces Yn. If F is a linear operator from X into Y
such that RnFT, • •• Tm is continuous for m> n, then RnFTt • • • Tn is continuous for
sufficiently large n.
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Lemma 2. If P is a primitive ideal in A of infinite codimension, then [A, S(D)] c P.

Proof. Let us first observe that the extended centroid of A/P is C (see [6,
Theorem 12]) and does not satisfy the standard polynomial identity S4 (see [9,
Theorem 7.1.14]).

We claim that there exist A e C, a linear functional fi on A, and a functional v on
A such that

(D(a2) - (Da)a - a(Da)) - (Xa2 + n(a)a + v(a)) e P

for all a e A. Indeed, for every a e A, we have

0 = D([a2, a]) = [Da2, a] + [a2. Da] = [Da2 - (Da)a - a{Da), a].

Consequently, the map q defined on A by q{a) = Da2 - (Da)a — a(Da) is a commuting
trace of the bilinear map B(a, b) = D(ab) — (Da)b - a(Db) on A x A. The map q can be
handled in the same way as in the proof of Theorem 1 in [1], the only difference being
in the application of [1, Lemmas 1 and 2] to A/P instead of A.

We can now proceed as in the proof of [1, Theorem 4] in order to prove that the
map d defined on A by d(a) — D(a) + Xa + \n(a) satisfies

d(ab) - (d(a)b + ad(b)) e P .

for all a,beA and therefore QPd is a derivation from A to A/P. Indeed, the identity
(4) in that proof becomes

d(ab + ba) - (d(a)b + d(b)a + ad(b) + bd(a) + p(a, b)) e P

for all a,beA, for a suitable symmetric bilinear functional p on A x A. The identity
(7) now becomes

p(a, a)([ab, c] + [ba, c]) - p(a, b)[a2, c] - p{a, a2)[b, c]+

(2p(a2, b) - p(a, ab + ba))[a, c)eP

for all a,b,ce A. In par t icular p{a, a)[a2, c] — p{a, a2)[a, c] e P which gives p{a, a)[[a2, c],
[a, c]] € P for all a,ceA. The arguments used in the proof of [1, Theorems 2 and 4]
apply to this situation and it may be concluded that p{a, b) — 0 for all a, b e A.
Consequent ly , d(a • b) — {d{a) • b + a • d(b)) e P for all a,b e A, where a • b = j(ab + ba).
By the same method as at the end of the proof of [1, Theorem 4] we get the relation
[a, b]r(d(ab) — d(a)b — ad(b))s[a, b] e P for all a, b,r,s e A, which yields the desired
conclusion, since A/P is not commutative.

Our next goal is to prove that S(d) c P. To this end we set an infinite-dimensional
complex irreducible Banach left /1-module X such that P = [a e A: aX = 0). We apply
the construction in [4, Theorem 2.2] to get sequences {«„} in A and {xn} in X such that
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an •• • a,xn ^ 0 and an+lan •• • a,xn = 0 for all n e N. For n e N, we define the continuous
linear operators Tn(a) = aan from A into itself, i?n(a + P) = axn from ,4/P into X, and
Sn(a + P) — aan + P from A/P into itself. It is a simple matter to verify that
RnQpdTy • • • Tm is continuous for m > n. Lemma 1 shows that RnQPdTx • • • Tn is
continuous for some n e N. On the other hand, it is immediate that
QpdTi • • • Tn — S, • • • SnQPd is continuous and therefore RnS, • • • SnQPd is continuous.
Consequently,

0 = R,Si • • • SnS(QPd) = S(QPd)an • • • a , x , .

Since S(QPd) is easily seen to be a two-sided ideal of A/P, we see that

S(QPd)X = S(QPd)(A/P)an • • • a,xn c S(QPd)an • • • a.x, = 0.

Hence S(QPd) = 0 and therefore S(d) c P.
For every a e A, we have adad = adaD + Aada and [9, Proposition 6.1.9(c)] shows

that S(adaD) = ada(«S(D)) and S(adad) - ada(S(d)). Therefore

[a, S(D)] C ada(5(D)) = <S(adaD) = S(a.dad) = ada[S{d)) c P

for all ae P. D

Lemma 3. 5(D) c Z(A).

Proof. Suppose that the result fails. Then the set V of those primitive ideals P of
A for which [A, S(D)] <£. P is non empty. According to Lemma 2 each P e V has finite
codimension and therefore A/P is simple. Moreover it is obvious that dim A/P > 1. On
account of [3, Theorem 2 and Corollary 1] QP(S(D)) = A/P for every P e V. Let /0

denote the intersection of all the primitive ideals of A for which [<S(D), A] c P.
Take P, 6 V. Since /„ £ P, and /i /P, is simple, it follows that QP) (/„) = A/Px. Since

/4/P, is not commutative we can choose a, e /0 such that [a,, A] <£. P,.
Assume that Pt,--,Pn and a | t - - - ,a R have been chosen satisfying the following

conditions:

(i) Pk e P ,

(ii) ak e /t_,, where Ik — Io n P, n • • • n Pk,

(iii) ada, • • • adak(A) <£ Pk,

for fe=l, • • • ,« . We claim that there exists Pn+, e P such that /„ £ Pn+1 and
ada, • • • adan(/l) <£ Pn+1. If the claim were false, there would be

ada, • • • adan(/l) c
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Let fc, e A such that b2 = ada, • • • adan(b,) £ Pn and note that b2 e C\rei>inerp- L e t x

be a finite-dimensional irreducible Banach left ,4-module with Pn — {a e A: aA" = 0}. By
the Jacobson density theorem it is a simple matter to show that there exists b3 e A such
that dimfc3fe2^=l and (b3b2)

2X = 0. Set c = bib2. Since dimcX = l, there exists a
linear functional f on A such that {cac -f(a)c)X = 0 for all a e A. Consequently, we
have

cac-/(a)c6/n_,nPnn| f) P j = Rad(4) = 0.

Hence dim cAc < oo. Since c2 e Pn, we have

c 2 e / n n | PI P\ =

Consequently, (adc)2a = — 2cac for all a e A. Since dim(adc)2(/l) < oo, we see that
D(adc)2 is continuous. On the other hand, it is immediate that £)(adc)2 — (adc)2D is
continuous. Therefore (adc)2D is continuous and hence (adc)2(5(D)) = 0. Thus
cS(D)c = 0 and

0 = eP.(c)ePn(5(D))ePn(c) = Q^CKA/PJQ^C) = 0.

From this it follows that QPn(c) = 0, a contradiction. Choose Pn+] with the claimed
properties. On account of [1, Corollary 1] the linear subspace of A/Pn+l generated by
{adQPn(a)(QPn+l(A)): a e A} equals A/Pn+]. Since QPn+](In) = A/Pn+1 and ada, • • • &dan(A) <t
Pn+I, we conclude that there is an+l e /„ such that ada, • • • adanadan+,(>l) <£ Pn+l.

Note that, for all m,neN,

• adam = £ adC^a,) • • • adQPr(D(ak)) • • • adQP>m)

Since £™=i ad2pn(«i)- •adQPii(D(at))- • adQPi](am) is continuous and QPn(am) = 0 if
m > n, Lemma 1 shows that Q^Dada^ • -adan and therefore adQPii(a,)- • • adQPn(an)QPnD
are continuous for some n e N. Accordingly, we have

0 = adQ,.(a,) • • • adQ,, (an)<2pn(S(0)) = adg,, (a,) • • • adQP,(an)(A/Pn)

which contradicts the choice of an and Pn. D

Theorem. Let D be a Lie derivation on a semisimple Banach algebra A. Then
S(D) C Z(A). Accordingly, D is continuous if Z(A) - 0.
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Proof. If A is a complex Banach algebra without unit, then its unitization Ax

is a unital semisimple complex Banach algebra and we extend D to a Lie
derivation on Ax by defining D,(l) = 0. The preceding lemma shows that
£(£>,) c Z(AX). On the other hand, we have S(D) c S(DX) and therefore
S(D) CAD Z{AX) = Z(A).

If A is a real Banach algebra, then we consider its complexification Ac and we
extend D in the obvious way to a Lie derivation Dc of Ac. From what has already been
proved, we conclude that

S(D) CAHS(DC) CAHZ(AC) = Z(A). •

Next we show a discontinuous derivation on a semisimple Banach algebra whose
centre is C.

Example. Let A be the Banach algebra of the Hilbert-Schmidt operators on an
infinite-dimensional complex Hilbert space with an identity adjoined. A is
semisimple, Z(A) = C, and [a, b] is a trace class operator whenever a, b lie in A.
Therefore [A, A] is not closed in A and hence there exists a discontinuous linear
functional f on A whose kernel contains [A, A]. The discontinuous linear operator
D from A into itself defined by D(d) =f(a)l is easily seen to be a Lie derivation
of A.

REFERENCES

1. M. BRESAR, Commuting traces of biadditive mappings, commutativity preserving mappings
and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.

2. P. DE LA HARPE, Classical Banach-Lie algebras and Banach Lie groups of operators in
Hilbert space (Lecture Notes in Math. 285, Springer-Verlag, Berlin, 1972).

3. I. N. HERSTEIN, Lie and Jordan structures in simple, associative rings, Bull. Amer. Math.
Soc. 67(1961), 517-531.

4. B. E. JOHNSON and A. M. SINCLAIR, Continuity of derivations and a problem of
Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.

5. W. S. MARTINDALE, 3rd, Lie derivations of primitive rings, Michigan Math. J. 11 (1964),
183-187.

6. W. S. MARTINDALE, 3rd, Lie isomorphisms of prime rings, Trans. Amer. Math. Soc. 142
(1969), 437-455.

7. C. R. MIERS, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973),
403-409.

8. C. R. MIERS, Lie triple derivations of von Neumann algebras, Proc. Amer. Math. Soc. 71
(1978), 57-61.

https://doi.org/10.1017/S0013091500019933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019933


630 M. I. BERENGUER AND A. R. VILLENA

9. T. W. PALMER, Banach Algebras and the General Theory of *-algebras. Volume I: Algebras
and Banach Algebras (Cambridge University Press, 1994).

10. M. P. THOMAS, Primitive derivations on non-commutative Banach algebras, Pacific J.
Math. 159(1993), 139-152.

DEPARTAMENTO DE ANALISIS MATEMATICO
FACULTAD DE CIENCIAS
UNIVERSIDAD DE GRANADA
18071 GRANADA
SPAIN
E-mail: avillena@goliat.ugr.es

https://doi.org/10.1017/S0013091500019933 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019933

