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The separating subspace of any Lie derivation on a semisimple Banach algebra A is contained in the centre
of A.
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The Lie structure induced on a Banach algebra by the bracket [a, b] = ab — ba is of
lively interest for their intimate connections with the geometry of manifolds modeled
on Banach spaces. Many mathematics have studied Lie derivations on associative rings
[1, 5] and Lie derivations on some Banach algebras [2, 7, 8].

A Lie derivation of a Banach algebra A is a linear map D from A into itself
satisfying D({a, b)) = [D(a), b] + [a, D(b)] for all a,b e A. In this paper we study the
continuity of a Lie derivation D on an arbitrary semisimple Banach algebra 4. We
measure the continuity of D by considering its separating subspace, which is
defined as the subspace S(D) of those elements a € 4 for which there is a sequence
{a,} in A satisfying lima, =0 and limD(a,) =a. S(D) is easily checked to be a
Lie ideal of 4 and the closed graph theorem shows that D is continuous if, and
only if, S(D) =0.

Until further notice we assume that 4 is a unital semisimple complex Banach
algebra and D stands for a Lie derivation of A. Let Z(A4) denote the centre of A.
For each ae€ A let ada denote the continuous linear operator ada(b) = {a, b] from
A into itself. If P is a closed ideal of 4 we will denote by Q, the quotient map
from A onto A/P.

The next important result was essentially stated by M. P. Thomas and illustrate the
typical sliding hump argument.

Lemma 1 [10, Proposition 1.3]. Let X and Y be Banach spaces, {T,} a sequence of
continuous linear operators from X into itself, and let {R,} be a sequence of continuous
linear operators from Y into Banach spaces Y,. If F is a linear operator from X into Y
such that R,FT,---T, is continuous for m > n, then R,FT,---T, is continuous for
sufficiently large n.
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Lemma 2. If P is a primitive ideal in A of infinite codimension, then [A, S(D)] C P.

Proof. Let us first observe that the extended centroid of A/P is C (see [6,
Theorem 12]) and does not satisfy the standard polynomial identity S, (see [9,
Theorem 7.1.14]).

We claim that there exist 4 € C, a linear functional 4 on A, and a functional v on
A such that

(D(a*) — (Da)a — a(Da)) — (Aa® + p(a)a + v(a)) € P
for all a € A. Indeed, for every a € 4, we have
0 = D({d?, a]) = [Da?, a] + [@*, Da] = [Da? — (Da)a — a(Da), a.

Consequently, the map g defined on A4 by g(a) = Da’ — (Da)a — a(Da) is a commuting
trace of the bilinear map B(a, b) = D(ab) — (Da)b — a(Db) on A x A. The map g can be
handled in the same way as in the proof of Theorem 1 in [1], the only difference being
in the application of [1, Lemmas 1 and 2] to 4A/P instead of A.

We can now proceed as in the proof of [1, Theorem 4] in order to prove that the
map d defined on A by d(a) = D(a) + Aa + u(a) satisfies

d(ab) — (d(a)b + ad(b)) € P

for all a, b € A and therefore Q,d is a derivation from 4 to A/P. Indeed, the identity
(4) in that proof becomes

d(ab + ba) — (d(a)b + d(b)a + ad(b) + bd(a) + p(a,b)) € P

for all a, b € A, for a suitable symmetric bilinear functional p on 4 x A. The identity
(7) now becomes

p(a, a)([ab, c] + [ba, c]) - p(a, b)[a*, c] — p(a, a®)[b, c]+
(2p(d?, b) — p(a, ab + ba))[a, c] € P

for all a, b, c € A. In particular p(a, a)[d’, c] — p(a, a’)a, c] € P which gives p(a, a)[[d*, c],
[a,c]] € P for all a,c € A. The arguments used in the proof of [1, Theorems 2 and 4]
apply to this situation and it may be concluded that p(a,b) =0 for all a,b € A.
Consequently, d(a - b) — (d(a) - b +a - d(b)) € P for all a,b € A, where a-b =1(ab+ ba).
By the same method as at the end of the proof of [1, Theorem 4] we get the relation
[a, b]r(d(ab) — d(a)b — ad(b))s[a, b] € P for all a,b,r,s € A, which yields the desired
conclusion, since A/P is not commutative.

Our next goal is to prove that S(d) C P. To this end we set an infinite-dimensional
complex irreducible Banach left A-module X such that P = {a € 4: aX = 0}. We apply
the construction in [4, Theorem 2.2] to get sequences {a,} in 4 and {x,} in X such that
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a,---ax,#0anda,,a,---a,x, =0 for all n € N. For n € N, we define the continuous
linear operators T,(a) = aa, from A into itself, R,(a + P) = ax, from A/P into X, and
S,(a+P)y=aa,+ P from A/P into itself. It is a simple matter to verify that
R,QpdT,--- T, is continuous for m>n. Lemma 1 shows that R,Q,dT,---T, is
continuous for some neN. On the other hand, it is immediate that
Q,dT,---T, —S,---8,0,d is continuous and therefore R,S,---S,0,d is continuous.
Consequently,

0 =R,S,---8,5(Qpd) = S(Qpd)a, - - - a,x,.
Since S(Q,d) is easily seen to be a two-sided ideal of A/P, we see that
S(QPd)X = S(QPd)(A/P)an X, C S(QPd)an X, = 0.

Hence S(Q,d) = 0 and therefore S(d) C P.
For every a € A, we have adad = adaD + Aada and [9, Proposition 6.1.9(c)] shows
that S(adaD) = ada(S(D)) and S(adad) = ada(S(d)). Therefore

[a, S(D)] C ada(S(D)) = S(adaD) = S(adad) = ada(S(d)) C P

forallae P. 0
Lemma 3. S(D) C Z(A).

Proof. Suppose that the result fails. Then the set P of those primitive ideals P of
A for which [4, S(D)] ¢ P is non empty. According to Lemma 2 each P € P has finite
codimension and therefore A/P is simple. Moreover it is obvious that dim 4/P > 1. On
account of [3, Theorem 2 and Corollary 1] Q,(S(D)) = A/P for every P € P. Let I,
denote the intersection of all the primitive ideals of A for which [S(D), 4] C P.

Take P, € P. Since I, ¢ P, and A/P, is simple, it follows that Q, (I,) = A/P,. Since
A/P, is not commutative we can choose a; € I, such that [a,, A] ¢ P,.

Assume that P,,---,P, and a,,---,a, have been chosen satisfying the following
conditions:

(@) P.eP,
@ii) a, € I,_,, where , =I,NP,N---NP,
(iii) ada, ---ada,(A) ¢ P,,
for k=1,---,n. We claim that there exists P,, € P such that I ¢ P,,, and
ada, - - -ada,(A) ¢ P,,,. If the claim were false, there would be

ada,---ada(4)c [) P.

PeP,I,¢P
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Let b, € A such that b, = ada, - --ada,(b,) ¢ P, and note that b, € [\pp, .p P- Let X
be a finite-dimensional irreducible Banach left A-module with P, = {a € A: aX = 0}. By
the Jacobson density theorem it is a simple matter to show that there exists by, € A such
that dimb,b,X =1 and (b;b,)’X =0. Set ¢ = b,b,. Since dimcX =1, there exists a
linear functional f on A such that (cac — f(a)c)X =0 for all a € 4. Consequently, we
have

cac—f(a)cel,,NP,N ( N P) = Rad(4) = 0.
PeP,l,gP

Hence dim cAc < o0o. Since ¢’ € P,, we have
n

czeI,,ﬂ< N P):Rad(A):O.

PeP.I,¢P

Consequently, (adc)’a = —2cac for all ae A. Since dim(adc)’(4) < oo, we see that
D(adc)® is continuous. On the other hand, it is immediate that D(adc)® — (adc)’D is
continuous. Therefore (adc)’D is continuous and hence (adc)’(S(D)) =0. Thus
¢S(D)c =0 and

0 = Q5,()Q¢,(S(D)Qp,(c) = Qg (c)(A/P,)Qp,(c) = 0.

From this it follows that Qp(c) =0, a contradiction. Choose P,,, with the claimed
properties. On account of [1, Corollary 1] the linear subspace of A/P,,, generated by
{adQp (a)(Qp,,,(4)): a € A} equals A/P,,,. Since Qp,,,(I,) = A/P,,, and ada, ---ada,(A) ¢
P,,,, we conclude that there is a,,, € I, such that ada, - - - ada,ada,,,(4) € P,.,.
Note that, for all m,n € N,
QrDada, ---ada, = ) " adQy(a)- - -adQp(D(a,) - - - adQy, (a,)
k=1
+ adQP,.(al) cer adQP,,(am)QP,,D-
Since Y., adQ,(a,)---adQ;(D(a,)):--adQp (a,) is continuous and Qp(a,) =0 if

m > n, Lemma 1 shows that Q, Dada, - --ada, and therefore adQ, (a,) - - -adQp (a,)Qp D
are continuous for some n € N. Accordingly, we have

0 =adQp(a))--2dQp,(a,)25,(S(D)) = adQ;,(a)) - - - adQp, (a,)(A/ P,)

which contradicts the choice of a, and P,. ad

Theorem. Let D be a Lie derivation on a semisimple Banach algebra A. Then
S(D) C Z(A). Accordingly, D is continuous if Z(A) = 0.
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Proof. If A is a complex Banach algebra without unit, then its unitization A,
is a unital semisimple complex Banach algebra and we extend D to a Lie
derivation on A4, by defining D(1)=0. The preceding lemma shows that
S(D) c Z(A)). On the other hand, we have S(D)C S(D,) and therefore
S(D) Cc AN Z(A) = Z(A).

If A is a real Banach algebra, then we consider its complexification A¢c and we
extend D in the obvious way to a Lie derivation D¢ of Ac. From what has already been
proved, we conclude that

S(D) c ANS(De) C AN Z(Ae) = Z(A). a

Next we show a discontinuous derivation on a semisimple Banach algebra whose
centre is C.

Example. Let 4 be the Banach algebra of the Hilbert-Schmidt operators on an
infinite-dimensional complex Hilbert space with an identity adjoined. A4 is
semisimple, Z(4) =C, and [a,b] is a trace class operator whenever a,b lie in A.
Therefore [A, A] is not closed in A and hence there exists a discontinuous linear
functional f on A4 whose kernel contains [A, A]. The discontinuous linear operator
D from A into itself defined by D(a) =f(a)l is easily seen to be a Lie derivation
of A.
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