No CrossRef data available.
Article contents
Some embeddings between symmetric R. thompson groups
Published online by Cambridge University Press: 07 December 2021
Abstract
Let $m\leqslant n\in \mathbb {N}$, and $G\leqslant \operatorname {Sym}(m)$
and $H\leqslant \operatorname {Sym}(n)$
. In this article, we find conditions enabling embeddings between the symmetric R. Thompson groups ${V_m(G)}$
and ${V_n(H)}$
. When $n\equiv 1 \mod (m-1)$
, and under some other technical conditions, we find an embedding of ${V_n(H)}$
into ${V_m(G)}$
via topological conjugation. With the same modular condition, we also generalize a purely algebraic construction of Birget from 2019 to find a group $H\leqslant \operatorname {Sym}(n)$
and an embedding of ${V_m(G)}$
into ${V_n(H)}$
.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Edinburgh Mathematical Society , Volume 65 , Issue 1 , February 2022 , pp. 1 - 18
- Copyright
- Copyright © The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220325160349892-0707:S001309152100047X:S001309152100047X_inline643.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220325160349892-0707:S001309152100047X:S001309152100047X_inline644.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20220325160349892-0707:S001309152100047X:S001309152100047X_inline645.png?pub-status=live)