Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T18:35:52.787Z Has data issue: false hasContentIssue false

Standard X-Ray Diffraction Powder Patterns from The JCPDS Research Associateship

Published online by Cambridge University Press:  28 October 2013

Howard F. McMurdie
Affiliation:
JCPDS — International Centre for Diffraction Data
Marlene C. Morris
Affiliation:
JCPDS — International Centre for Diffraction Data
Eloise H. Evans
Affiliation:
JCPDS — International Centre for Diffraction Data
Boris Paretzkin
Affiliation:
JCPDS — International Centre for Diffraction Data
Winnie Wong-Ng
Affiliation:
JCPDS — International Centre for Diffraction Data
Yuming Zhang
Affiliation:
JCPDS — International Centre for Diffraction Data
Camden R. Hubbard
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards

Extract

The following new or updated patterns are submitted by the JCPDS Research Associateship at the National Bureau of Standards. The patterns are a continuation of the series of standard X-ray diffraction powder patterns published previously in the NBS Circular 539, the NBS Monograph 25, and in this journal. The methods of producing these reference patterns are described in this journal, Vol. 1, No. 1, p. 40 (1986).

The data for each phase apply to the specific sample described. A sample was mixed with one or two internal standards: silicon (SRM640a), silver, tungsten, or fluorophlogopite (SRM675). Expected 2-theta values for these standards are specified in the methods described (ibid.). Data, from which the reported 2-theta values were determined, were measured with a computer controlled diffractometer. Computer programs were used to locate peak positions and calibrate the patterns as well as to perform variable indexing and least squares cell refinement. A check on the overall internal consistency of the data was also provided by a computer program.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

1. Warren, B. E. (1930). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 74, 131.Google Scholar

References

1. Soubeyroux, J. L. and Roth, R. S. (1986) accepted for publication by J. Solid State Chem.Google Scholar
2. Awadalla, A. A. and Gatehouse, B. M. (1978). J. Solid State Chem. 24, 183.CrossRefGoogle Scholar

References

1. Ritter, J. J., Roth, R. S. and Blendell, J. (1986). J. Am. Chem. Soc. 69, 155.Google Scholar
2. Bland, J. A. (1961). Acta Crystallogr. 14, 875.CrossRefGoogle Scholar

References

1. Kuzel, H. J. (1971). Zem.-Kalk-Gips 24, 83.Google Scholar
2. Moore, A. E. and Taylor, H. F. W. (1970). Acta Crystallogr. Sec. B 26, 386.CrossRefGoogle Scholar

References

1. Wretblad, P. E. (1930). Z. Anorg. Allg. Chem. 189, 329.CrossRefGoogle Scholar
2. Saalfield, H. (1964). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 120, 342.CrossRefGoogle Scholar
3. Swanson, H. E., Gilfrich, N. T., and Ugrinic, G. M. (1955). Natl. Bur. Stand. (U.S.), Circ., 539 5, 22.Google Scholar

References

1. Russell, R. B. (1953). J . Appl. Phys. 24, 232.CrossRefGoogle Scholar
2. Ross, R. G. and Hume-Rothery, W. (1963). J. Less-Common Met. 5, 258.CrossRefGoogle Scholar
3. Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M. (1954). Natl. Bur. Stand.(U.S.), Circ., 539, 3, 18.Google Scholar

References

1. Leciejewicz, J. (1961). Acta Crystallogr. 14, 66.CrossRefGoogle Scholar
2. Kay, M. I. (1961). Acta Crystallogr. 14, 80.CrossRefGoogle Scholar
3. White, W. B., Dachille, F., and Roy, R. (1961). J. Am. Ceram. Soc. 44, 170.CrossRefGoogle Scholar
4. Swanson, H. E. and Fuyat, R. K. (1953). Natl. Bur. Stand. (U.S.), Circ., 539, 2, 32.Google Scholar

References

1. Liang, J. and Zhang, Y. (1985). Scientific Reports, Chinese Acad. Sci. 5, 339.Google Scholar

References

1. Berger, S. V. (1949). Acta Chem. Scand. 3, 660.CrossRefGoogle Scholar
2. Yamaguchi, O., Kamata, M., and Schimizu, K. (1981). J. Inorg. Nucl. Chem. 43, 1079.CrossRefGoogle Scholar

References

1. Warren, B. E. and Bragg, W. L. (1928). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 69, 168.Google Scholar
2. Bragg, W. L. (1929). Proc. R. Soc. London, Ser. A, 123, 537.Google Scholar

References

1. Calvo, C. and Faggiani, R. (1975). Can. J. Chem. 53, 1516.CrossRefGoogle Scholar
2. Majling, J., Raninec, Š., and Ďurovič, S. (1979) Calculated Powder Diffraction Patterns for Anhydrous Phosphates (VEDA, Bratislava, Czechoslovakia), 48.Google Scholar
3. Nord, A. and Stefanidis (private communication).Google Scholar

References

1. Wernick, J. H. and Geller, S. (1960). Trans. Am. Inst. Min. Metall. Pet. Eng. 218, 866.Google Scholar

References

1. Sljukic, M., Matkovic, B., Prodic, B., and Scavnicar, S. (1967). Croat. Chem. Acta 39, 145.Google Scholar

References

1. Vousden, P. (1951). Acta Crystallogr. 4, 373.CrossRefGoogle Scholar
2. Quill, L. L. (1932). Z. Anorg. Allg. Chem. 208, 270.Google Scholar
3. Nassau, K., Wang, C. A., and Grasso, M. (1979). J. Am. Ceram. Soc. 62, 74.CrossRefGoogle Scholar

References

1. Averbuch-Pouchot, M. T. and Durif, A. (1983). Z. Krist. 164, 307.Google Scholar

References

1. Völlenkle, H., Wittmann, A., and Nowotny, H. (1963). Monatsh. Chem. 94, 956.CrossRefGoogle Scholar
2. Levi, G. R. and Peyronel, G. (1935). Z. Kristallogr., Kristallgeom, Kristallphys., Kristallchem. 92, 190.Google Scholar
3. Costantino, U. and Ginestra, A. (1982). Thermochim. Acta 58, 179.CrossRefGoogle Scholar