Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T05:54:20.786Z Has data issue: false hasContentIssue false

Powder Diffraction Data for the αH Intermetallic Phases with Slight Variation in Composition in the System Al-Fe-Si

Published online by Cambridge University Press:  28 October 2013

Á. Griger
Affiliation:
Aluterv-FKI, Engineering and Development Centre, Hungalu Budapest, H-1389. P.O.B. 28.Hungary

Abstract

Based on high purity constituents ternary AlFeSi intermetallic phases were prepared and annealed at 600°C for a month with compositions close to that of αH-AlFeSi (Al8Fe2Si) phase (∼8 wt.% Si, ∼32 wt.% Fe). The powder diffraction patterns and the chemical compositions of the different αH-AlFeSi intermetallic compounds formed as major components in the samples were investigated by X-ray powder diffraction and electron microprobe analysis, respectively.

A complete powder diffraction pattern is presented for the αH-AlFeSi intermetallic phase with 8 wt.% silicon and 33.5 wt.% iron content formed almost congruently. The refined cell parameters are given as

a = 12.4056 (7) Å

c = 26.236 (2) Å

Comparing the observed intensities with intensities calculated from single crystal data, gave very good agreement.

The lattice parameters of αH-AlFeSi phases with different silicon content were refined by the least-squares method. A contraction of the unit cell caused by the increase of the silicon content in the phase can be observed. Relative changes of the cell dimensions for 1 wt. % increase in silicon are −0.06%, −0.09 % and −0.21 % for the parameters a and c and for the unit cell volume, V, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armand, M. (1954). Congrés international de l'Aluminium Vol. 1. 305327.Google Scholar
Armand, M. & Portevin, A. (1952). Compt. Rend. 235, 15061508.Google Scholar
Cooper, M. (1967). Acta Ciysllogr. 23, 11061107.Google Scholar
Corby, R. N. & Black, P. J. (1977). Acta Crystallogr. B33, 34683475.CrossRefGoogle Scholar
Fink, W. L. & Van Horn, K. R. (1931). Trans. Am. Inst. Min. Metall. Eng. Inst. Metals Div. 383.Google Scholar
Gwyer, A. G. C. & Phillips, H. W. L. (1927). J. Inst. Met. 38, 2983.Google Scholar
Mondolfo, L. F. (1976). Aluminium Alloys: Structure and Properties. Butterworth, London, Boston. 534536.CrossRefGoogle Scholar
Munson, D. (1967). J. Inst. Met. 95, 217219.Google Scholar
Munson, D. (1968). private communication (PDF card: 20–30).Google Scholar
Phillips, H. W. L. (1959). ‘Annotated Equilibrium Diagrams of Some Aluminium Alloy System’ (Monograph No 25.) London. 5764.Google Scholar
Phillips, H. W. L. & Varley, P. C. (1943). J. Inst. Met. 69, 317350.Google Scholar
Phragmén, G. (1950). J. Inst. Met. 77, 489552.Google Scholar
Pratt, J. N. & Raynor, G. V. (1951). J. Inst. Met. 79, 211232.Google Scholar
Robinson, K. & Black, P. J. (1953). Philos. Mag. 44, 13921397.CrossRefGoogle Scholar
Smith, G. S. & Snydner, R. L. (1979). J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Smithells, C. J. (1967). Metals Reference Book. 5. ed. Butterworth, London, Boston.Google Scholar
Stefániay, V., Griger, Á. & Turmezey, T. (1986). To be published.Google Scholar
Sun, C. Y. & Mondolfo, L. F. (1967). J. Inst. Met. 95, 384.Google Scholar
Taupin, D. (1973). J. Appl. Crystallogr. 6, 380385.CrossRefGoogle Scholar
Werner, P. E. (1969). Ark. Kemi, 31, 513516.Google Scholar
Yvon, K., Jeitschko, W. & Parthe, E. (1977). J. Appl. Crystallogr. 10, 7374.CrossRefGoogle Scholar