Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T18:58:10.383Z Has data issue: false hasContentIssue false

Deconvolution of Powder Diffraction Spectra

Published online by Cambridge University Press:  10 January 2013

K. E. Wiedemann
Affiliation:
NASA Langley Research Center, Hampton, Virginia 23665-5225
J. Unnam
Affiliation:
NASA Langley Research Center, Hampton, Virginia 23665-5225
R. K. Clark
Affiliation:
NASA Langley Research Center, Hampton, Virginia 23665-5225

Abstract

An improved deconvolution theory is presented for the resolution enhancement in powder diffraction spectra. In powder patterns, diffracted intensity, which is conceptually located at a single 2θ position, is actually distributed over a range of 2θ because of instrumental factors, crystal defects, beam penetration, and sample flatness. The location of the peak is usually taken as the peak maximum or the peak centroid. However, when interpreting complex spectra these approaches to locating peaks are not straightforward and deconvolution can be a useful tool. The method presented herein enhances resolution without altering peak area or peak position. Comparisons are made with results of other methods, with emphasis on deconvoluting spectra that contain random error. The discussion includes treatment of discrete data and analysis of the properties of the solution.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, Milton & Stegun, Irene A. (eds.) (1964). Handbook of Mathematical Functions, Dover Publications, Inc., New York.Google Scholar
Bronk, B. V. & Whitten, W. B. (1973). Nucl. Instr. andMeth. 106, 319331.Google Scholar
Cantoni, V., De Lotto, I. & Ghirardi, A. (1978). Nucl. Instr. and Meth. 153, 197205.CrossRefGoogle Scholar
van Cittert, P. K. (1931). Z. Phys. 69, 298308.CrossRefGoogle Scholar
Franklin, J. N. (1970). J. Math. Anal. Appl. 31, 682716.CrossRefGoogle Scholar
Hesse, O. (1857). Crelle's Jour. 227273.Google Scholar
Jansson, P. A. (1970). J. Opt. Soc. Am. 60, 184191.CrossRefGoogle Scholar
Jansson, P. A., Hunt, R. H. & Plyler, E. K. (1968). J. Opt. Soc. Am. 58, 16651666.CrossRefGoogle Scholar
Jansson, P. A., Hunt, R. H. & Plyler, E. K. (1970). J. Opt. Soc. Am. 60, 596599.CrossRefGoogle Scholar
Kennett, T. J., Brewster, P. M., Prestwich, W. V. & Robertson, A. (1978). Nucl. Instr. and Meth. 153, 125135.CrossRefGoogle Scholar
Kennett, T. J., Prestwich, W. V. & Robertson, A. (1978a). Nucl. Instr. and Meth. 151, 285292.CrossRefGoogle Scholar
Kennett, T. J., Prestwich, W. V. & Robertson, A. (1978b). Nucl. Instr. and Meth. 151, 293301.CrossRefGoogle Scholar
Phillips, D. L. (1962). Jour. Assoc. Comp. Mach. 9, 8497.CrossRefGoogle Scholar
Strand, O. N. & Westwater, E. R. (1968). Jour. Assoc. Comp. Mach. 15, 100114.CrossRefGoogle Scholar
Twomey, S. (1963). Jour. Assoc. Comp. Mach. 10, 97101.Google Scholar
Twomey, S. (1965). J. Franklin Institute 279, 95109.CrossRefGoogle Scholar
Wiedemann, K. E., Unnam, J. & Clark, R. K. (1987). Powder Diffraction 2, 137145.CrossRefGoogle Scholar