Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T08:02:43.010Z Has data issue: false hasContentIssue false

Crystal structures and property characterization of two magnetic frustration compounds

Published online by Cambridge University Press:  10 August 2018

Kunkun Li
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100049, China
Duanduan Yuan
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China University of Chinese Academy of Sciences, Beijing 100049, China
Shijie Shen
Affiliation:
Department of Physics & Electronic Engineering, Taizhou University, Taizhou 318000, China
Jiangang Guo*
Affiliation:
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

We report the structure and physical properties of two quasi-two-dimensional triangular antiferromagnetic materials, Co0.66Al2Se3.53 and Ni0.61Al2Se3.55, which show highly magnetically frustrated characters. Powder X-ray diffractions demonstrate that Co0.66Al2Se3.53 and Ni0.61Al2Se3.55 possess identical space group of P-3m1 with lattice parameters a = 3.8089(1) Å, c = 12.676(1) Å and a = 3.7880(1) Å, c = 12.650(1) Å, respectively. Analyzing the susceptibility data of Co0.66Al2Se3.53 reveal a Curie Weiss temperature of −216 K, and a spin-freezing transition temperature of 4.5 K, giving a frustration index f = −θcw/Tf ≈ 48. Ni0.61Al2Se3.55 possesses an effective moment of 2.38 µB, a Curie–Weiss temperature of −62 K with no sign of spin-freezing transition down to 2 K. The AC susceptibility data of Co0.66Al2Se3.53 suggest a spin glass-like transition, but no intersite mixing between Co2+ and Al3+ was observed from the X-ray photoelectron spectroscopy measurements.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, P. W. (1973). “Resonating valence bonds: a new kind of insulator?Mater. Res. Bull. 8(2), 153160.Google Scholar
Anderson, P. W. (1987). “The resonating valence bond state in La2CuO4 and superconductivity,” Science 235(4793), 1196.Google Scholar
Balents, L. (2010). “Spin liquids in frustrated magnets,” Nature 464(7286), 199208.Google Scholar
Chen, X., Liang, J., Xie, S., Qiao, Z., Tong, X., and Xing, X. (1992). Superconductivity and magnetic properties in Pr0.2Yb0.8−xLaxBa2Cu3O7−δ. Z. Phys. B Condens. Matter 88, 14.Google Scholar
Chen, X., Liang, J., Tang, W., Wang, C., and Rao, G. (1995a). Superconductivity at 55 K in La0.7Sr1.3Cu(O,F)4+δ with reduced CuO2 sheets and apical anions. Phys. Rev. B 52, 1623316236.Google Scholar
Chen, X., Liang, J., and Wang, C. (1995b). “Effect of high-angle diffraction data on Rietveld structure refinementActa Physica Sin. 4(4), 259.Google Scholar
Chen, X., Liang, J., Wang, Y., Wu, F., and Rao, G. (1995c). Superconductivity in Y0.6Pr0.4Ba2−xSrxCu3O7−δ: the role of apical oxygen in hybridization. Phys. Rev. B 51, 1644416447.Google Scholar
Clark, L., Nilsen, G. J., Kermarrec, E., Ehlers, G., Knight, K. S., Harrison, A., Attfield, J. P., and Gaulin, B. D. (2014). “From spin glass to quantum spin liquid ground states in molybdate pyrochlores,” Phys. Rev. Lett. 113(11), 117201.Google Scholar
Collins, M. F. and Petrenko, O. A. (1997). “Review/synthèse: triangular antiferromagnets,” Can. J. Phys. 75(9), 605655.Google Scholar
Guo, J. G., Jin, S. F., Wang, G., Wang, S. C., Zhu, K. X., Zhou, T. T., He, M., and Chen, X. L. (2010). “Superconductivity in the iron selenide KxFe2Se2 (0 < x < 1),” Phys. Rev. B 82(18), 180520.Google Scholar
Higo, T., Ishii, R., Menard, M. C., Chan, J. Y., Yamaguchi, H., Hagiwara, M., and Nakatsuji, S. (2011). “Magnetic properties of the quasi-two-dimensional antiferromagnet Ni0.7Al2S3.7,” Phys. Rev. B 84(5), 054422.Google Scholar
Itou, T., Oyamada, A., Maegawa, S., Tamura, M., and Kato, R. (2008). “Quantum spin liquid in the spin-1∕2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2,” Phys. Rev. B 77(10), 104413.Google Scholar
Jin, S. F., Huang, Q., Lin, Z. P., Li, Z. L., Wu, X. Z., Ying, T. P., Wang, G., and Chen, X. L. (2015). “Two-dimensional magnetic correlations and partial long-range order in geometrically frustrated CaOFeS with triangle lattice of Fe ions,” Phys. Rev. B 91(9), 094420.Google Scholar
Jin, S. F., Fan, X., Wu, X. Z., Sun, R. J., Wu, H., Huang, Q. Z., Shi, C. L., Xi, X. K., Li, Z. L., and Chen, X. L. (2017). “High-T c superconducting phases in organic molecular intercalated iron selenides: synthesis and crystal structures,” Chem. Commun. 53(70), 97299732.Google Scholar
Krizan, J. W. and Cava, R. J. (2014). “Nacaco2f7: a single-crystal high-temperature pyrochlore antiferromagnet,” Phys. Rev. B 89(21), 214401.Google Scholar
Kurosaki, Y., Shimizu, Y., Miyagawa, K., Kanoda, K., and Saito, G. (2005). “Mott transition from a spin liquid to a Fermi liquid in the spin-frustrated organic conductor kappa-(ET)2Cu2(CN)3,” Phys. Rev. Lett. 95(17), 177001.Google Scholar
Lai, X. F., Chen, X. L., Jin, S. F., Wang, G., Zhou, T. T., Ying, T. P., Zhang, H., Shen, S. J., and Wang, W. Y. (2013). “New layered iron sulfide NaFe1.6S2: synthesis and characterization,” Inorg. Chem. 52(22), 1286012862.Google Scholar
Lai, X. F., Jin, S. F., Chen, X., Zhou, T. T., Ying, T. P., Zhang, H., and Shen, S. J. (2014). “New layered manganese selenide KMnAgSe2: structure and properties,” Mater. Express 4(4), 343348.Google Scholar
Li, K. K., Huang, Q. Z., Zhang, Q. H., Xiao, Z. W., Kamiya, T., Hosono, H., Yuan, D. D., Guo, J. G., and Chen, X. L. (2018). “Csfe4−δSe4: a new compound closely related to alkali intercalated FeSe superconductors,” Inorg. Chem 57(8), 45024509.Google Scholar
Li, K. K., Jin, S. F., Guo, J. G., Xu, Y. P., Su, Y., Feng, E., Liu, Y., Zhou, S. Q., Ying, T. P., Li, S. Y., Wang, Z. Q., and Chen, X. L., (submitted). “Unusual double-peak specific heat and spin freezing in a spin-2 triangular lattice antiferromagnet FeAl2Se4,” Phys. Rev. Lett.Google Scholar
Lu, X. F., Wang, N. Z., Zhang, G. H., Luo, X. G., Ma, Z. M., Lei, B., Huang, F. Q., and Chen, X. H. (2014). “Superconductivity in LiFeO2Fe2Se2 with anti-PbO-type spacer layers,” Phys. Rev. B 89(2), 020507.Google Scholar
Mandale, A. B., Badrinarayanan, S., Date, S. K., and Sinha, A. P. B. (1984). “Photoelectron-spectroscopic study of nickel, manganese and cobalt selenides,” J. Electron. Spectrosc. Relat. Phenom. 33(1), 6172.Google Scholar
McGuire, G. E., Schweitzer, G. K., and Carlson, T. A. (1973). “Core electron binding energies in some Group IIIA, VB, and VIB compounds,” Inorg. Chem. 12(10), 24502453.Google Scholar
Mydosh, J. A. and Ebrary, I. (1993). Spin Glasses: An Experimental Introduction (Taylor & Francis, London).Google Scholar
Nakatsuji, S., Nambu, Y., Tonomura, H., Sakai, O., Jonas, S., Broholm, C., Tsunetsugu, H., Qiu, Y., and Maeno, Y. (2005). “Spin disorder on a triangular lattice,” Science 309(5741), 16971700.Google Scholar
Nakatsuji, S., Tonomura, H., Onuma, K., Nambu, Y., Sakai, O., Maeno, Y., Macaluso, R. T., and Chan, J. Y. (2007). “Spin disorder and order in quasi-2D triangular Heisenberg antiferromagnets: comparative study of FeGa2S4, Fe2Ga2S5, and NiGa2S4,” Phys. Rev. Lett. 99(15), 157203.Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCr CPD-Newsl. 26, 1219.Google Scholar
Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M., and Saito, G. (2003). “Spin liquid state in an organic Mott insulator with a triangular lattice,” Phys. Rev. Lett. 91(10), 107001.Google Scholar
Takada, K., Sakurai, H., Takayama-Muromachi, E., Izumi, F., Dilanian, R. A., and Sasaki, T. (2003). “Superconductivity in two-dimensional CoO2 layers,” Nature 422, 53.Google Scholar
Tu, Q. Y., Chen, X. L., Ma, B. K., Zhao, Z. X., Xu, Y. P., Hu, B. Q., and Liang, J. K. (2001). Study on the structure and superconductivity of La2CuO4+δ chemically oxidized by NaClO at 50 °C. Supercond. Sci. Technol. 14, 517.Google Scholar
Ying, T. P., Chen, X. L., Wang, G., Jin, S. F., Zhou, T. T., Lai, X. F., Zhang, H., and Wang, W. Y. (2012). “Observation of superconductivity at 30~46 K in AxFe2Se2 (A = Li, Na, Ba, Sr, Ca, Yb, and Eu),” Sci. Rep. 2, 426.Google Scholar
Ying, T. P., Chen, X. L., Wang, G., Jin, S. F., Lai, X. F., Zhou, T. T., Zhang, H., Shen, S. J., and Wang, W. Y. (2013). “Superconducting phases in potassium-intercalated iron selenides,” J. Am. Chem. Soc. 135(8), 29512954.Google Scholar
Ying, T. P., Gu, Y. Q., Chen, X., Wang, X. B., Jin, S. F., Zhao, L. L., Zhang, W., and Chen, X. L. (2016). “Anderson localization of electrons in single crystals: LixFe7Se8,” Sci. Adv. 2(2), e1501283.Google Scholar
Zha, W., Zhou, Z., Zhao, D., and Feng, S. (2016). “Positive effects of Al3+ partially substituted by Co2+ cations on the catalytic performance of Co1+xAl2−xO4 (x = 0-0.2) for methane combustion,” J. Sol-Gel Sci. Technol. 78(1), 144150.Google Scholar
Zhou, T. T., Wang, Y., Jin, S. F., Li, D. D., Lai, X. F., Ying, T. P., Zhang, H., Shen, S. J., Wang, W., and Chen, X. L. (2014). “Structures and physical properties of layered oxyselenides Ba2MO2Ag2Se2 (M = Co, Mn),” Inorg. Chem. 53(8), 41544160.Google Scholar
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 1

Download Li et al. supplementary material(File)
File 16.7 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 2

Download Li et al. supplementary material(File)
File 43 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 3

Download Li et al. supplementary material(File)
File 16.7 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 4

Download Li et al. supplementary material(File)
File 41.5 KB
Supplementary material: File

Li et al. supplementary material

Li et al. supplementary material 5

Download Li et al. supplementary material(File)
File 26.7 KB