Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T17:07:46.974Z Has data issue: false hasContentIssue false

Crystal structure of raltegravir potassium, C20H20FKN6O5

Published online by Cambridge University Press:  12 August 2015

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Kai Zhong
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of the potassium salt of raltegravir has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Raltegravir potassium crystallizes in space group P21/c (#14) with a = 15.610 59(9), b = 8.148 19(3), c = 16.125 97(6) Å, β = 94.1848(5)°, V = 2045.72(1) Å3, and Z = 4. The most prominent feature of the crystal structure is the chains of edge-sharing 7-coordinate KO5N2 parallel to the b-axis. The crystal structure can be described as having K-containing layers in the bc-plane, with double layers of CH4F halfway between them. The raltegravir anion is not in the minimum-energy conformation, suggesting that coordination to the K and hydrogen bonds play a significant role in the solid-state structure. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1499.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).Google Scholar
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B, Struct. Sci. 58, 380388.CrossRefGoogle ScholarPubMed
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42(6), 11971202.Google Scholar
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data”, J. Appl. Crystallogr. 46, 12311235.CrossRefGoogle Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem., Int. Ed. Engl. 34(15), 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Breese, N. E. and O'Keefe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.Google Scholar
Croxtall, J. D. and Keam, S. J. (2009). “Raltegravir,” Drugs 69(8), 1059–75.Google Scholar
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446467.Google Scholar
Dovesi, R., Roetti, C., Freyria Fava, C., Prencipe, M., and Saunders, V. R. (1993). “On the elastic properties of lithium, sodium, and potassium oxide. An ab initio study,” Chem. Phys. 156, 1119.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.CrossRefGoogle Scholar
ICDD (2014). PDF-4+ 2014 (Database), edited by Kabekkodu, S. (International Centre for Diffraction Data, Newtown Square, PA).Google Scholar
Jetti, R. R., Jonnalagadda, M., Raval, C. K., and Datta, D. (2011). Novel polymorphs of raltegravir, WO 2011024192 A2.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86–784). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15(5), 427432.CrossRefGoogle ScholarPubMed
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm,” Z. Kristallogr. Suppl. 191196.Google Scholar
Nada, R., Catlow, C. R. A., Pisani, C., and Orlando, R. (1993). “ Ab initio Hartree–Fock perturbed-cluster study of neutral defects in LiF,” Model. Simul. Mater. Sci. Eng. 1, 165187.Google Scholar
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inf., 114. doi:10.1186/1758-2946-3-33.Google ScholarPubMed
Parthasaradhi, R. B., Rathnakar, R. K., Raji, R. R., Muralidhara, R. D., and Subash, C. R. K. (2010). Novel polymorphs of raltegravir potassium, WO 2010140156 A2.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B, Struct. Sci. 56(3), 455465.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B, Struct. Sci. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction Inc. (2013). Spartan'14 Version 1.1.0 (Wavefunction Inc., Irvine, California).Google Scholar
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 1

Download Kaduk supplementary material(File)
File 2.8 MB
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 2

Download Kaduk supplementary material(File)
File 7.5 KB