Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T17:17:32.788Z Has data issue: false hasContentIssue false

Crystal structure of lacosamide form I, C13H18N2O3

Published online by Cambridge University Press:  12 August 2015

James A. Kaduk*
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois 60616
Kai Zhong
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania, 19073-3273
Amy M. Gindhart
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania, 19073-3273
Thomas N. Blanton
Affiliation:
ICDD, 12 Campus Blvd., Newtown Square, Pennsylvania, 19073-3273
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The crystal structure of lacosamide form I has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques (density functional theory). Lacosamide form I crystallizes in space group P21 (#4) with a = 10.677 73(5), b = 4.799 68(2), c = 13.639 16(9) Å, β = 91.6331(10)̊, V = 698.719(6) Å3, and Z = 2. Van der Waals interactions are important in the crystal structure. Two N–H···O hydrogen bonds form C1,1(4) chains along the b-axis. Several weaker C–H···O hydrogen bonds to the ketone oxygens also contribute to the packing energy. These C–H···O extend both along the b-axis and in the ac-plane, and help link the molecules in three dimensions. The powder pattern has been submitted to International Centre for Diffraction Data for inclusion in the Powder Diffraction File™.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).Google Scholar
Allen, F. H. (2002). “The Cambridge structural database: a quarter of a million crystal structures and rising,” Acta Crystallogr. Sect. B: Struct. Sci. 58, 380388.CrossRefGoogle ScholarPubMed
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N. and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.Google Scholar
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.Google Scholar
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.Google Scholar
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.Google Scholar
Favre-Nicolin, V., and Černý, R. (2002). “FOX, Free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.Google Scholar
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.Google Scholar
ICDD (2014). “PDF-4+ 2014 (Database),” in International Centre for Diffraction Data, edited by Dr. Kabekkodu, Soorya (Newtown Square, PA, USA).Google Scholar
Larson, A. C., and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS), Los Alamos National Laboratory Report LAUR 86-784.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton. Radiat. 15(5), 427432.Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.CrossRefGoogle Scholar
McKinnon, J. J., Spackman, M. A., and Mitchell, A. S. (2004). “Novel tools for visualizing and exploring intermolecular interactions in molecular crystals,” Acta Crystallogr. Sect. B 60, 627668.CrossRefGoogle ScholarPubMed
MDI (2014). Jade 9.5 (Materials Data. Inc., Livermore CA).Google Scholar
Mundorfer, T., Markovic, M., Kosutic Hulita, N., and Zegarac, M. (2009). “Polymorphic and Amorphous Forms of Lacosamide and Amorphous Compositions,” U.S. Patent 2009/0298947.Google Scholar
O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., and Hutchison, G. R. (2011). “Open Babel: An open chemical toolbox,” J. Chem. Inf. 3(33); DOI:10.1186/1758-2946-3-33.Google Scholar
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sec. B: Struct. Sci. 56(3), 455465.Google Scholar
Spackman, M. A., and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm. 11, 1932.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.Google Scholar
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci. 70(6), 10201032.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.Google Scholar
Wavefunction, Inc. (2013). Spartan ‘14 Version 1.1.0 (Wavefunction Inc., Irvine CA).Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, M. J., Turner, M. J., Jayatilaka, D., and Spackman, M. A. (2012). CrystalExplorer Version 3.1, (University of Western Australia).Google Scholar
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 1

Download Kaduk supplementary material(File)
File 2.7 MB
Supplementary material: File

Kaduk supplementary material

Kaduk supplementary material 2

Download Kaduk supplementary material(File)
File 5.9 KB