Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T05:56:04.880Z Has data issue: false hasContentIssue false

Crystal structure of Ca2Zn2(V4O14) and Pb2Cd2(V3O10)(VO4) double vanadates

Published online by Cambridge University Press:  14 June 2018

V. D. Zhuravlev*
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya ul. 91, Ekaterinburg 620990, Russia
A. P. Tyutyunnik
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya ul. 91, Ekaterinburg 620990, Russia
A. Y. Chufarov
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya ul. 91, Ekaterinburg 620990, Russia
N. I. Lobachevskaya
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Pervomaiskaya ul. 91, Ekaterinburg 620990, Russia
A. A. Velikodnyi
Affiliation:
Faculty of Chemistry, Moscow State University, Moscow 119992, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Polycrystalline samples of Ca2Zn2(V4O14) (I) and Pb2Cd2(V3O10)(VO4) (II) were synthesized using the nitrate–citrate method (I) and conventional solid state reaction (II). The structural refinement based on X-ray powder diffraction data showed that the crystal structure of (I) is characterized by monoclinic symmetry with unit-cell parameters a = 6.8044(1) Å, b = 14.4876(3) Å, c = 11.2367(2) Å, β = 99.647(1)° [space group P21/c (No. 14), Z = 4], and the crystal structure of (II) is triclinic with unit-cell parameters a = 7.03813(6) Å, b = 12.9085(1) Å, c = 6.99961(5) Å, α = 90.7265(5)°, β = 96.3789(5)°, γ = 94.9530(6)°, V = 629.470(8) Å3 [space group P$\bar 1$ (No. 2), Z = 2].

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO 2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Babaryk, A. A., Odynets, I. V., Khainakov, S., Garcia-Granda, S., and Slobodyanik, N. S. (2015). “Polianionic identity of Ca2Zn2(V3O10)(VO4) photocatalyst manifested by X-ray powder diffraction and periodic boundary density functional theory calculations,” CrystEngComm 17(40), 77727777.Google Scholar
Basiev, Т. Т., Voronko, Yu. K., Maslov, V. A., Sobol, A. A., and Shukshin, V. E. (2011). “Lead pyrovanadate single crystal as a new SRS material,” Quantum Electron., 41(2), 125127.Google Scholar
Bhatia, S. N., Moharatra, N., Nirmala, R., and Malik, S. (2010). “The effect of spin dilution on magnetism of the linear chain system β-Cu2−xZnxV2O7,” Pramana J. Phys. 74(5), 833843.Google Scholar
Cid-García, A., Lozada-Morales, R., López-Calzada, G., Zayas Ma, E., Angel, O. Z., Carmona-Rodriguez, J., Rodriguez-Melgarejo, F., Rubio-Rosas, E., Jiménez-Sandoval, S., and Tomás, S. A. (2012). “Room temperature photoluminescence in crystalline/amorphous Er-doped Cd2V2O7,” J. Lumin. 132(6), 151115114.Google Scholar
Cowin, P. I., Lan, R., Petit, C. T. G., Christophe, T. G., Zhang, L., and Tao, S. (2011). “Conductivity and stability of cobalt pyrovanadates,” J. Alloys Compd. 509(10), 41174121.Google Scholar
Dalal, M., Taxak, V. B., Lohra, S., Sangvan, D., and Khatkar, S. P. (2015). “Photoluminescence and structural properties of Eu3+ doped SrZnV2O7 nanocrystals,” J. Lumin. 161, 6370.Google Scholar
Felsche, J. (1970). “Polymorphism and crystal data of the rare-earth disilicates of type R.E.2 Si2O7,” J. Less Common Met. 21(1), 114.Google Scholar
Felsche, J. (1972). “A new silicate structure containing linear (Si3O10) groups,” Naturwissenschaften 59(1), 3536.Google Scholar
Krasnenko, T. I., Slobodin, B. V., Zabara, O. A., Fotiev, A. A., and Kiseleva, N. V. (1990). “Phase relations in the system V2O5-Na4V2O7-Ca2V2O7-Cd2V2O7,” Russ. J. Inorg. Chem. 35, 15531556.Google Scholar
Krasnenko, T. I., Rotermel, M. V., and Samigullina, R. F. (2017). “Stabilizing the associated non-autonomous phase upon thermal expansion of Zn2V2O7,” Russ. J. Inorg. Chem. 62, 412417.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). (Report LAUR 86-748) (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Murashova, E. V., Velikodnyi, Yu. A., and Trunov, V. K. (1989). “Crystal structures of double pyrovanadates BaMV2O7 (M = Ca, Cd, Zn),” Russ. J. Inorg. Chem. 34, 13881392.Google Scholar
Murashova, E. V., Velikodnyi, Yu. A., and Trunov, V. K. (1991). “Crystal structures of double pseudo pyrovanadates PbM'V2O7 (M’ = Mg, Zn),” Kristallografiya 36, 617621.Google Scholar
Murashova, E. V., Velikodnyi, Yu. A., Yluchin, A. V., and Zhuravlev, V. D. (1993a). “Crystal structures of Sr1.58Ca0.42V2O7 Sr1.5Cd2V2O7 and the singularities of their isomorphism,” Russ. J. Inorg. Chem. 38, 428431.Google Scholar
Murashova, E. V., Velikodnyi, Yu. A., and Zhuravlev, V. D. (1993b). “Crystal structures of double pyrovanadates CaMgV2O7 и CaСоV2O7,” Russ. J. Inorg. Chem. 38, 14531454.Google Scholar
Murashova, E. V., Velikodnyi, Yu. A., and Zhuravlev, V. D. (1994). “Crystalline structure of Ca1.22Cd0.78V2O7 solid solution,” Russ. J. Inorg. Chem. 39, 738739.Google Scholar
ICDD. (2016). PDF-2 (Database), edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 6571.Google Scholar
Rotermel, M. V. and Krasnenko, T. I. (2017). “The mechanism of thermal expansion of structural modifications of zinc pirvanadate”, Kristallografiya 62, 549556.Google Scholar
Sanchez-Andujar, M., Yáñez-Vilar, S., Mira, J., Biskup, N., Rivas, J., Castro-García, S., and Señarís-Rodríguez, M. A. (2011). “Role of the magnetic ordering on the dielectric response of M2V2O7 (M = Co and Cu) divanadates,” J. Appl. Phys. 109, 054106, https://doi.org/10.1063/1.3556448.Google Scholar
Sivakumar, T., Chang, H. Y., and Halasyamani, P. S. (2007). “Synthesis, structure, and characterization of a new two-dimensional lead (II) vanadate, Ba3PbV4O14,” Solid State Sci. 9(5), 370375.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Takahashi, M., Hagiwara, M., and Fujihara, S. (2016). “Liquid-phase synthesis of Ba2V2O7 phosphor powders and films using immiscible biphasic organic–aqueous systems,” Inorg. Chem. 55(16), 78797885.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Velikodnyi, Yu. A. and Murashova, E. V. (1992). “The crystal structure of SrCuV2O7 and the structural series SrMV2O7 (M = Cu,Zn,Mg,Sr),” Kristallografiya 37, 818820.Google Scholar
Velikodnyi, Yu. A., Trunov, V. K., Kudin, O. V., and Zhuravlev, V. D. (1985). “Crystal structure of dual pyrovanadate of strontium-magnesium,” Kristallografiya 30, 663667.Google Scholar
Velikodnyi, Yu. A., Murashova, E. V., and Trunov, V. K. (1989). “Crystal structure of double pyrovanadate SrZnV2O7,” Kristallografiya 34, 607610.Google Scholar
Vogt, R. and Muller-Buschbaum, Hk. (1991a). “Bacuv2o7: Das letzte Glied der Reihe MCuV2O7 (M = Mg2+, Ca2+, Sr2+, Ba2+),” J. Less Common Met. 171(2), L35L39.Google Scholar
Vogt, R. and Muller-Buschbaum, Hk. (1991b). “Der Übergang von planaren zu tetraedrischen CuO4-Baugruppen in CaCuV2O7,” Z. Anorg. Allg. Chem. 594(1), 119126.Google Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr., 18(5), 367370.Google Scholar
Zhuravlev, V. D. and Velikodnyi, Yu. A. (1990). “System SrO–CaO–V2O5,” Russ. J. Inorg. Chem. 35, 264266.Google Scholar
Zhuravlev, V. D. and Velikodnyi, Yu. A. (1997). “Isomorphic substitutions in systems Pb2V2O7–M2V2O7, где M = Ba, Sr, Ca, Cd,” Russ. J. Inorg. Chem. 42, 13871389.Google Scholar
Zhuravlev, V. D., Velikodnyi, Yu. A., and Surat, L. L. (1993). “X-ray study of systems Mn2V2O7–Mn2V2O7, где M = Ba, Sr, Ca, Zn, Cu, Ni,” Russ. J. Inorg. Chem. 38, 12211224.Google Scholar
Zhuravlev, V. D., Surat, L. L., and Velikodnyi, Yu. A. (1994). “Phase diagrams of the systems Mn(VO3)2-M(VO3)2 и Mn2V2O7-M2V2O7 (M – Sr, Ba),” Neorg. Mater., 30, 15741575.Google Scholar
Zhuravlev, V. D., Fotiev, A. A., Zhukov, V. P., and Kristallov, L. V. (1982). “Research systems Mg2V2O7-Sr2V2O7, Zn2V2O7–M2V2O7 (M = Mg, Ca, Sr),” Russ. J. Inorg. Chem, 27, 10181021.Google Scholar
Supplementary material: File

Zhuravlev et al. supplementary material

Zhuravlev et al. supplementary material 1

Download Zhuravlev et al. supplementary material(File)
File 732.2 KB