Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T05:39:33.007Z Has data issue: false hasContentIssue false

Comments on Ernan McMullin's “The Impact of Newton's Principia on the Philosophy of Science”

Published online by Cambridge University Press:  01 April 2022

George E. Smith*
Affiliation:
Philosophy Department, Tufts University
*
Send requests for reprints to the author, Philosophy Department, Tufts University, Medford, MA 02155–7059; email: [email protected].

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Article Commentary
Copyright
Copyright © Philosophy of Science Association 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertoloni Meli, Domenico (1993), Equivalence and Priority: Newton versus Leibniz. Oxford: Oxford University Press.Google Scholar
Bigourdan, Guillaume (1930), “Lettres inédites d'Euler à Clairaut”, in Comptes rendus du Congrès des sociétés savantes de Paris et des départments tenu à Lille en 1928, Section des sciences. Paris: Imprimerie Nationale. Translation by Curtis Wilson in Wilson 1980, 143.Google Scholar
Chapin, Seymour L. (1995), “The Shape of the Earth”, in Taton and Wilson 1995, 2234.Google Scholar
Clairaut, Alexis-Claude (1743), Théorie de la figure de la terre, tirée des principes de l'hydrostatique. Paris: David.Google Scholar
Clairaut, Alexis-Claude (1752), Théorie de la lune déduite du seul principe de l'attraction réciproquement proportionelle aux quarrés des distances. St. Petersburg: Imprimerie de l'Académie Impériale des Sciences.Google Scholar
Clairaut, Alexis-Claude (1760), Théorie du mouvement des comètes. Paris: Lambert.Google Scholar
Clairaut, Alexis-Claude (1762), Recherches sur la comète des anées 1531, 1607, 1682, et 1759. St. Petersburg: Imprimerie de l'Académie Impériale des Sciences.Google Scholar
d'Alembert, Jean (1749), Recherches sur la précession des equinoxes et sur la nutation de l'axe de la terre dans le systém Newtonian. Paris: David.Google Scholar
Descartes, René (1983), Principles of Philosophy. Translated by V. R. Miller and R. P. Miller. Dordrecht: D. Reidel Publishing.Google Scholar
Euler, Leonhard ([1753] 1969), Theoria motus lunae, exhibens omnes eius inaequalitates. Berlin: Academiae Imperialis Scientiarum. Reprinted in Leonhardi Euleri opera omnia, Ser. 2, Vol. 23. Basel: Societatis Scientiarum Naturalium Helveticae, 63336.Google Scholar
Forbes, Eric G. (1971), The Euler-Mayer Correspondence (1751–1755): A New Perspective on Eighteenth Century Advances in Lunar Theory. New York: Elsevier.10.1007/978-1-349-01250-3CrossRefGoogle Scholar
Forbes, Eric G. (1975) Greenwich Observatory. Volume 1, Origins and Early History (1675–1835). London: Taylor and Francis.Google Scholar
Huygens, Christiaan (1929), “De vi centrifuga”, in Oeuvres complètes de Christiaan Huygens, Vol. 16. The Hague: Martinus Nijhoff, 253301.Google Scholar
Kant, Immanuel ([1754] 1968), “Untersuchung der Frage, ob die Erde in ihrer Umdrehung um die Achse, wodurch sie die Abwechselung des Tages und der Nacht hervorbringt, einige Veränderung seit den ersten Zeiten ihres Ursprungs erlitten habe, und woraus man sich ihrer Versichern könne, welche von der königl. Akademie der Wissenschaften zu Berlin zum Preise für das jetzlaufende Jahr aufgegeben worden.” Reprinted in Kants Werke. Berlin: Walter de Gruyter, 183191.Google Scholar
Kushner, David (1989), “The Controversy Surrounding the Secular Acceleration of the Moon's Mean Motion”, Archive for History of Exact Sciences 39: 291316.Google Scholar
Mayer, Johann Tobias (1753), “Novae tabulae motuum solis et lunae”, Commentarii societatis regiae scientarium Gottingensis 2: 383430.Google Scholar
Newton, Isaac (1715), “An Account of the Book entituled Commercium epistolicum Collini & aliorum”, Philosophical Transactions of the Royal Society 29: 173224.Google Scholar
Newton, Isaac (1952), Opticks. New York: Dover.Google Scholar
Newton, Isaac (1960), The Correspondence of Isaac Newton, Vol. II. Edited by H. W. Turnbull. Cambridge: Cambridge University Press.10.1017/9781108627375CrossRefGoogle Scholar
Newton, Isaac (1974), “De motu corporum in gyrum”, in Whiteside, D. T. (ed.), The Mathematical Papers of Isaac Newton, Vol. VI. Cambridge: Cambridge University Press, 3080.Google Scholar
Newton, Isaac (1989), The Preliminary Manuscripts for Isaac Newton's 1687 Principia, 16841686. Cambridge: Cambridge University Press.Google Scholar
Newton, Isaac (1999), The Principia: Mathematical Principles of Natural Philosophy. Translated by I. Bernard Cohen and A. Whitman. Berkeley: University of California Press.Google Scholar
Reid, T. (1969), Essays on the Intellectual Powers of Man. Cambridge: MIT Press.Google Scholar
Shapiro, Alan (2001), “Newton's Optics and Atomism”, in Cohen, I. Bernard and Smith, George E. (eds.), The Cambridge Companion to Newton. Cambridge: Cambridge University Press.Google Scholar
Smith, George (2001a), “From the Phenomenon of the Ellipse to an Inverse-Square Force: Why Not?”, in Malament, David (ed.), Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on His 70th Birthday. La Salle: Open Court, in press.Google Scholar
Smith, George (2001b), “The Methodology of the Principia”, in Cohen, I. Bernard and Smith, George E. (eds.), The Cambridge Companion to Newton. Cambridge: Cambridge University Press, in press.Google Scholar
Smith, George (2002), “Was Wrong Newton Bad Newton?”, in Franklin, Allan and Gavroglu, Kostas (eds.), Wrong Is Not Bad. Dordrecht: Kluwer, in press.Google ScholarPubMed
Streete, Thomas (1661), Astronomia Carolina: A New Theorie of the Celestial Motions. London: for Lodowick Lloyd.Google Scholar
Taton, René and Wilson, Curtis (eds.) (1989), Planetary Astronomy from the Renaissance to the Rise of Astrophysics, Part A: Tycho Brahe to Newton, The General History of Astronomy, Vol. 2A. Cambridge: Cambridge University Press.Google Scholar
Taton, René and Wilson, Curtis (eds.) (1995), Planetary Astronomy from the Renaissance to the Rise of Astrophysics, Part B: The Eighteenth and Nineteenth Centuries, The General History of Astronomy, Vol. 2B. Cambridge: Cambridge University Press.Google Scholar
Westfall, Richard S. (1986), “Newton and the Acceleration of Gravity”, Archive for History of Exact Sciences 35: 255272.10.1007/BF00357308CrossRefGoogle Scholar
Wilson, Curtis (1980), “Perturbations and Solar Tables from Lacaille to Delambre: the Rapprochement of Observation and Theory”, Part I, Archive for History of Exact Sciences 22: 53188.10.1007/BF00327870CrossRefGoogle Scholar
Wilson, Curtis (1989), “Predictive Astronomy in the Century after Kepler”, in Taton and Wilson 1989, 161206.Google Scholar
Wilson, Curtis (2000), “From Kepler to Newton: Telling the Tale”, in Dalitz, R.H. and Nauenberg, M. (eds.), The Foundations of Newtonian Scholarship. Singapore: World Scientific, 22324210.1142/9789812813442_0013CrossRefGoogle Scholar
Wilson, Curtis (2001), “Newton and Celestial Mechanics”, in Cohen, I. Bernard and Smith, George E. (eds.), The Cambridge Companion to Newton. Cambridge: Cambridge University Press, in press.Google Scholar
Yoder, Joella G. (1988), Unrolling Time: Christiaan Huygens and the Mathematization of Nature. Cambridge: Cambridge University Press.Google Scholar