Antigenic variation is a powerful survival strategy adapted by certain species of parasitic protozoa to allow them to survive in the immunized host. It is exemplified by the African trypanosomes, which provide far and away the best characterized and most studied system of this kind. Why have the trypanosomes developed antigenic variation to such a sophisticated level? Because the trypanosome lives its life in the bloodstream of its mammalian host and is therefore in continuous conflict with the host's immune system. Antigenic variation represents its whole survival strategy, with some help provided by its ability to immunosuppress the host. The importance of antigenic variation to the trypanosome is underscored by the estimate that up to 10% of the trypanosome genome may be devoted to variant antigen genes (Van der Ploeg et al. 1982). Most other parasitic protozoa prefer a less confrontational existence and usually adopt an intracellular home for at least a part of their life-cycle within the mammalian host. That being the case, do other parasitic protozoa need antigenic variation within their armorarium ? The answer seems to be yes, although the reasons why are by no means clear. For example, the stages in the life-cycle which exhibit antigenic variation might be expected to be those which are released free into the bloodstream – in malaria, sporozoites and merozoites, for example. Yet there seems to be no evidence for phenotypic variation at all in these stages. Rather, it is the intracellular stages which, in both Plasmodium and Babesia, seem to elaborate molecules which are expressed at the surface of the parasitized cell, and which are capable of both eliciting an immune response and of avoiding the con- sequences of such a response by phenotypic antigenic variation. Why are such antigens expressed, and what is their functional significance?