Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T02:05:11.991Z Has data issue: false hasContentIssue false

The Wellcome Trust Lecture: Genes for antigens of Plasmodium falciparum

Published online by Cambridge University Press:  23 August 2011

D. J. Kemp
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
R. L. Coppel
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
H. D. Stahl
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
A. E. Bianco
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
L. M. Corcoran
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
P. McIntyre
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
C. J. Langford
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
J. M. Favaloro
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
P. E. Crewther
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
G. V. Brown
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
G. F. Mitchell
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
J. G. Culvenor
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
R. F. Anders
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia

Extract

Sporozoites of P. falciparum and other Plasmodia appear to be fairly simple antigenically, in that there is a dominant antigen, the circumsporozoite (CS) protein that forms the sporozoite surface coat (Potocnjak, Yoshida, Nussenzweig & Nussensweig, 1980; Santoro et al. 1983). Consequently, the CS protein and the gene encoding it have now been studied in considerable detail (Ellis et al. 1983; Godson et al. 1983; Ozaki et al. 1983; Dame et al. 1984; Enea et al. 1984). In contrast to sporozoites, the asexual blood stages of P. falciparum are antigenically complex. Two-dimensional gel analyses of immunoprecipitated, biosynthetically labelled antigens indicate that repeated infection with P. falciparum results in the synthesis of antibodies against a large number of distinct antigens (Perrin & Dayal, 1982; Brown et al. 1981, 1983). In further contrast to the sporozoite, the asexual blood stages of different P. falciparum isolates exhibit a high degree of antigenic heterogeneity (Brown et al. 1983; Hall et al. 1983; McBride, Walliker & Morgan, 1982). Much of this antigenic diversity is no doubt due to allelic differences but clonal populations of parasites may also have the capacity to undergo antigenic variation (Hommel, David & Oligino, 1983).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, R. F., Brown, G. V. & Edwards, A. (1983). Characterization of an S antigen synthesized by several isolates of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 80, 6652–6.CrossRefGoogle Scholar
Anders, R. F., Coppel, R. L., Brown, G. V., Saint, R. B., Cowman, A. F., Lingelbach, K. R., Mitchell, G. F. & Kemp, D. J. (1984). Plasmodium falciparum complementary DNA clones expressed in Escherichia coli encode many distinct antigens. Molecular Biology and Medicine 2, 177–92.Google ScholarPubMed
Anders, R. F., Shi, P.-T., Brown, G. V., Stahl, H. D., Favaloro, J., Bianco, A. E., Crewther, P. E., Coppel, R. L., Leach, S. J. & Kemp, D. J. (1985 a). Immune recognition of repeat structures in malaria antigens. In The Immune Recognition of Protein Antigens. Current Communications in Molecular Biology, Cold Spring Harbour Laboratory (in the Press).Google Scholar
Anders, R. F., Shi, P.T., Scanlon, D. B., Leach, S. J., Coppel, R. L., Brown, G. V., Stahl, H. D. & Kemp, D. J. (1985 b). Antigenic repeat structures in proteins of Plasmodium falciparum. In Synthetic Peptides as Antigens, Ciba Foundation Symposium No. 119. (in the Press).Google Scholar
Ardeshir, F., Flint, J. E. & Reese, R. T. (1985). Expression of Plasmodium falciparum surface antigens in Escherichia coli. Proceedings of the National Academy of Sciences, USA 82, 2518–22.CrossRefGoogle ScholarPubMed
Borst, P. & Cross, G. A. M. (1982). The molecular basis for trypanosome antigenic variation. Cell 29, 291303.CrossRefGoogle ScholarPubMed
Brown, G. V., Anders, R. F., Stace, J. D., Alpers, M. P. & Mitchell, G. F. (1981). Immunoprecipitation of biosynthetically-labelled proteins from different Papua New Guinea Plasmodium falciparum isolates by sera from individuals in the endemic area. Parasite Immunology 3, 283–98.CrossRefGoogle ScholarPubMed
Brown, G. V., Anders, R. F. & Knowles, G. (1983). Differential effect of immunoglobulin on the in vitro growth of several isolates of Plasmodium falciparum. Infection and Immunity 39, 1228–35.CrossRefGoogle ScholarPubMed
Brown, G. V., Anders, R. F., Coppel, R. L., Saint, R. B., Cowman, A. F., Stahl, H. D., Lingel-Bach, K. R., Mitchell, G. P., Alpers, M. P. & Kemp, D. J. (1984). The expression of Plasmodium falciparum antigens in E. coli. Philosophical Transactions of the Royal Society, London B307, 179–87.Google Scholar
Brown, G. V., Culvenor, J. G., Crewther, P. E., Bianco, A. E., Coppel, R. L., Saint, R. B., Stahl, H. D., Kemp, D. J. & Anders, R. F. (1985). Localization of the ring-infected erythrocyte surface antigen (RESA) of Plasmodium falciparum in merozoites and ring infected erythrocytes. Journal of Experimental Medicine 162, 774–9.CrossRefGoogle ScholarPubMed
Brown, K. N. & Brown, I. N. (1965). Immunity to malaria. Antigenic variation in chronic infections of Plasmodium knowlesi. Nature, London 208, 1286–8.CrossRefGoogle ScholarPubMed
Campbell, G. H., Miller, L. H., Hudson, D., Franco, E. L. & Andrysiak, P. M. (1984). Monoclonal antibody characterization of Plasmodium falciparum antigens. American Journal of Tropical Medicine and Hygiene 33, 1051–4.CrossRefGoogle ScholarPubMed
Carle, G. F. & Olson, M. V. (1984). Separation of chromosomal DNA molecules from yeast by orthogonal-field-alteration gel electrophoresis. Nucleic Acids Research 12, 5647–64.CrossRefGoogle Scholar
Carter, R., Miller, L. H., Rener, J., Kaushall, D. C., Kumar, N., Graves, P. M., Grotendorst, C. A., Gwadz, R. W., French, C. & Wirth, D. (1984). Target antigens in malaria transmission blocking immunity. Philosophical Transactions of the Royal Society, London B307, 201–13.Google Scholar
Cheung, A., Shaw, A. R., Loban, J. & Perrin, L. H. (1985). Cloning and expression in Escherichia coli of a surface antigen of Plasmodium falciparum merozoites. The EMBO Journal 4, 1007–12.CrossRefGoogle ScholarPubMed
Coppel, R. L., Cowman, A. F., Lingelbach, K. R., Brown, G. V., Saint, R. B., Kemp, D. J. & Anders, R. F. (1983). Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids. Nature, London 306, 751–6.CrossRefGoogle ScholarPubMed
Coppel, R. L., Brown, G. V., Mitchell, G. F., Anders, R. F. & Kemp, D. J. (1984 a). Identification of a cDNA encoding a mature blood stage antigen of Plasmodium falciparum by immunization of mice with bacterial lysates. The EMBO Journal 3, 403–7.CrossRefGoogle ScholarPubMed
Coppel, R. L., Cowman, A. F., Anders, R. F., Bianco, A. E., Saint, R. B., Lingelbach, K. R., Kemp, D. J. & Brown, G. V. (1984 b). Immune sera recognize on erythrocytes a Plasmodium falciparum antigen composed of repeated amino acid sequences. Nature, London 310, 789–91.CrossRefGoogle ScholarPubMed
Coppel, R. L., Anders, R. F., Brown, G. V., Cowman, A. F., Lingelbach, K. R., Saint, R. B., Mitchell, G. F. & Kemp, D. J. (1984 c). Detection and analysis of Plasmodium falciparum antigens expressed in Escherichia coli. In Molecular Parasitology (ed. August, J. T.) pp. 103–15. New York: Academic Press.Google Scholar
Coppel, R. L., Favaloro, J. M., Crewther, P. E., Burkott, T. R., Bianco, A. E., Stahl, H. D., Kemp, D. J., Anders, R. F. & Brown, G. V. (1985 a). A blood-stage antigen of Plasmodium falciparum shares determinants with the sporozoite coat protein. Proceedings of the National Academy of Sciences, USA 82, 5121–5.CrossRefGoogle ScholarPubMed
Coppel, R. L., Saint, R. B., Stahl, H. D., Langford, C. J., Brown, G. V., Anders, R. F. & Kemp, D. J. (1985 b). Plasmodium falciparum: Differentiation of isolates with DNA hybridization using antigen gene probes. Experimental Parasitology 60, 82–9.CrossRefGoogle ScholarPubMed
Coppel, R. L., Mcintyre, P., Woodrow, G., Scanlon, D., Anders, R. F. & Kemp, D. J. (1985 c). Variation in repeat sequence and number in the moerozoite coat precursor protein of Plasmodium falciparum. Molecular and Biochemical Parasitology (submitted).Google Scholar
Coppel, R. L., Culvenor, J., Bianco, A. E., Crewther, P. M., Stahl, H. D., Brown, G. V., Anders, R. F. & Kemp, D. J. (1985d). A variable antigen associated with the surface of erythrocytes infected with mature stages of Plasmodium falciparum. Molecular and Biochemical Parasitology (submitted).CrossRefGoogle Scholar
Corcoran, L. M., Forsyth, K. P., Bianco, A. E., Brown, G. V. & Kemp, D. J. (1986). Chromosome size polymorphisms in Plasmodium falciparum can involve deletions and are frequent in natural parasite populations. Cell (submitted).CrossRefGoogle Scholar
Cowman, A. F., Coppel, R. L., Saint, R. B., Favaloro, J., Crewther, P. E., Stahl, H. D., Bianco, A. E., Brown, G. V., Anders, R. F. & Kemp, D. J. (1984). The RESA polypeptide of Plasmodium falciparum contains two separate blocks of tandem repeats encoding antigenic epitopes that are naturally immunogenic in man. Molecular Biology and Medicine 2, 207–22.Google ScholarPubMed
Cowman, A. F., Saint, R. B., Coppel, R. L., Brown, G. V., Favaloro, J., Crewther, P. E., Culvenor, J. G., Bianco, A. E., Stahl, H. D., Mitchell, G. F., Kemp, D. J. & Anders, R. F. (1985 a). Repeat structures in protein antigens of asexual erythrocyte stages of Plasmodium falciparum. In Modern Approaches to Vaccines of Molecular and Chemical Basis of Resistance to Viral, Bacterial and Parasitic Diseases, (ed. Lerner, R. and Chanock, R.). Cold Spring Harbor Laboratory.Google Scholar
Cowman, A. F., Saint, R. B., Coppel, R. L., Brown, G. V., Anders, R. F. & Kemp, D. J. (1985 a). Conserved sequences flank variable tandem repeats in two S-antigen genes of P. falciparum. Cell 40, 775–83.CrossRefGoogle Scholar
Crewther, P. E., Bianco, A. E., Brown, G. V., Coppel, R. L., Stahl, H. D., Kemp, D. J. & Anders, R. F. (1985). Affinity purification of human antibodies directed against cloned antigens of Plasmodium falciparum. Journal of Immunological Methods (in the Press).Google Scholar
Dame, J. B., Williams, J. L., Mccutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L. & Miller, L. H. (1984). Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium, falciparum. Science 225, 593–9.CrossRefGoogle ScholarPubMed
DeVries, A. L., Vandenheede, J. & Feeney, R. E. (1971). Primary structure of freezing point-depressing glycoproteins. Journal of Biological Chemistry 246, 305–8.CrossRefGoogle ScholarPubMed
Ellis, J., Ozaki, L. S., Gwadz, R. W., Cochrane, A. H., Nussenzweig, V., Nussenzweig, R. S. & Godson, G. N. (1983). Cloning and expression in E. coli of the malarial sporozoite surface antigen gene from P. knowlesi. Nature, London 302, 536–8.CrossRefGoogle Scholar
Enea, V., Ellis, J., Zavala, F., Arnot, D. E., Asavanich, A., Masuda, A., Quakyi, I. & Nussenzweig, R. S. 1984). DNA cloning of Plasmodium falciparum circumsporozoite gene: amino acid sequence of repetitive epitope. Science 225, 628–30.CrossRefGoogle ScholarPubMed
Epstein, N., Miller, L. H., Kaushel, D. C., Udeinya, I. J., Rener, J., Howard, T. J.Asofsky, R., Aikawa, M. & Hess, R. L. (1981). Monoclonal antibodies against a specific surface determinant on malarial (Plasmodium knowlesi) merozoites block erythrocyte invasion. Journal of Immunology 127, 212–17.CrossRefGoogle ScholarPubMed
Fenton, B., Walker, A. & Walliker, D. (1985). Protein variation in clones of Plasmodium falciparum detected by two dimensional electrophoresis. Molecular and Biochemical Parasitology 16, 173–83CrossRefGoogle ScholarPubMed
Forney, J. D., Epstein, L. M., Freer, L. B., Rudman, B. M., Widmayer, J., Klein, W. H. & Preer, J. R. (1983). Structure and expression of genes for surface proteins in Paramecium. Molecular and Cellular Biology 3, 466–74.Google ScholarPubMed
Freeman, R. R. & Holder, A. A. (1983). Surface antigens of malaria merozoites. Journal of Experimental Medicine 158, 1647–53.CrossRefGoogle ScholarPubMed
Garfinkel, M. D., Pruitt, R. E. & Meyerowitz, E. M. (1983). DNA sequences, gene regulation and modular protein evolution in the Drosophila 68C glue gene cluster. Journal of Molecular Biology 168, 765–89CrossRefGoogle ScholarPubMed
Godson, G. N., Ellis, J., Svec, P., Schlesinger, D. H. & Nussenzweig, V. (1983). Identification and chemical synthesis of a tandemly repeated immunogenic region of P. knowlesi circumsporozoite protein. Nature, London 305, 2933.CrossRefGoogle ScholarPubMed
Hadley, T. J., Leech, J. H., Green, T. J., Daniel, W. A., Wahlgren, M., Milleb, L. H. & Howard, R. J. (1983). A comparison of knobby (K+) and knobless (K) parasites from two strains of Plasmodium falciparum. Molecular and Biochemical Parasitology 9, 271–8.CrossRefGoogle ScholarPubMed
Hall, R., McBride, J., Morgan, G., Tait, A., Zolg, J. W., Walker, D. & Scaife, J. (1983). Antigens of the erythrocytic stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Molecular and Biochemical Parasitology 7, 247–65.CrossRefGoogle ScholarPubMed
Hall, R., Hyde, J. E., Goman, M., Simmons, D. L., Hope, I. A., Mackay, M., Scaife, J., Merkli, B., Richle, R. & Stocker, J. (1984). Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature, London 311, 379–82.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1981). Immunization against blood-stage rodent malaria using purified parasite antigens. Nature, London 294, 361–4.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1982). Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. Journal of Experimental Medicine 156, 1528–38.CrossRefGoogle ScholarPubMed
Holder, A. A., Freeman, R. R. & Newbold, C. I. (1983). Serological cross-reaction between high molecular weight proteins synthesized in blood schizonts of P. yoelii P. chabaudi and Plasmodium falciparum. Molecular and Biochemical Parasitology 9, 191–6.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1984). The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. Journal of Experimental Medicine 160, 624–9.CrossRefGoogle ScholarPubMed
Hommel, M., David, P. H. & Oligino, L. D. (1983). Surface alterations of erythrocytes in Plasmodium falciparum malaria. Journal of Experimental Medicine 157, 1137–48.CrossRefGoogle ScholarPubMed
Hope, I. A., Hall, R., Simmons, D. L., Hyde, J. E. & Scaife, J. G. (1984). Evidence for immunological cross-reaction between sporozoites and blood stages of a human malarial parasite. Nature, London 308, 191–4.CrossRefGoogle Scholar
Hope, I. A., Mackay, M., Hyde, J. E., Goman, M. & Scaife, J. (1985). The gene for an exported antigen of the malaria parasite Plasmodium falciparurn cloned and expressed in Escherichia coli. Nucleic Acids Research 13, 369–79.CrossRefGoogle ScholarPubMed
Howard, R. J. & Barnwell, J. W. (1984 a). The detergent solubility properties of a malarial (Plasmodium knowlesi) variant antigen expressed on the surface of infected erythrocytes. Journal of Cellular Biochemistry 24, 297306.CrossRefGoogle ScholarPubMed
Howard, R. F., Stanley, H. A., Campbell, G. H. & Reese, R. T. (1984 b). Proteins responsible for a punctate fluorescence pattern in Plasmodium falciparum merozoites. American Journal of Tropical Medicine and Hygiene 33, 1055–9.CrossRefGoogle ScholarPubMed
Kemp, D. J., Coppel, R. L., Cowman, A. F., Saint, R. B., Brown, G. V. & Anders, R. F. (1983). Expression of Plasmodium falciparum blood-stage antigens in Escherichia coli: detection with antibodies from immune humans. Proceedings of the National Academy of Sciences, USA 80, 3787–91.CrossRefGoogle ScholarPubMed
Kemp, D. J., Corcoran, L. M., Coppel, R. L., Stahl, H. D., Bianco, A. E., Brown, G. V. & Anders, R. F. (1985). Size variation in chromosomes from independent cultures isolates of P. falciparum. Nature, London 315, 347–50.CrossRefGoogle Scholar
Kilejian, A. (1974). A unique histidine-rich polypeptide from the malaria parasite, Plasmodium lophurae. Journal of Biological Chemistry 249, 4650–5.CrossRefGoogle ScholarPubMed
Kilejian, A. (1979). Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 76, 4650–3.CrossRefGoogle ScholarPubMed
Kilejian, A. (1980). Homology between a histidine-rich protein from Plasmodium lophurae and a protein associated with the knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Journal of Experimental Medicine 151, 1534–8.CrossRefGoogle Scholar
Koenen, M., Scherf, A., Mercereau, O., Langsley, G., Sibili, L., Dubois, P., Pereira Da Silva, L. & Müller-Hill, B. (1984). Human antisera detect a Plasmodium falciparum genomic clone encoding a nonapeptide repeat. Nature, London 311, 382–5.CrossRefGoogle ScholarPubMed
Langreth, G. S., Reese, R. T., Moytl, M. R. & Trager, W. (1979). Plasmodium falciparum: loss of knobs on the infected erythrocyte surface after long-term cultivation. Experimental Parasitology 48, 213–91.CrossRefGoogle ScholarPubMed
Leech, J. H., Barnwell, J. W., Aikawa, M., Miller, L. H. & Howard, R. J. (1984). Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. Journal of Cell Biology 98, 1256–64.CrossRefGoogle ScholarPubMed
Manser, T., Wysocki, L. J., Gridley, T., Near, R. I. & Gefter, M. L. (1985). The molecular evolution of the immune response. Immunology Today 6, 94101.CrossRefGoogle ScholarPubMed
McBride, J. S., Walliker, D. & Morgan, G. (1982). Antigenic diversity in the human malaria parasite Plasmodium falciparum. Science 217, 254–7.CrossRefGoogle ScholarPubMed
McBride, J. S., Newbold, C. I. & Anand, R. (1985). Polymorphism of a high molecular weight schizont antigen of the human malaria parasite Plasmodium falciparum. Journal of Experimental Medicine 161, 160–80.CrossRefGoogle ScholarPubMed
McCutchan, T. F., Hansen, J. L., Dame, J. B. & Mullins, J. A. (1984). Mung bean nuclease cleaves Plasmodium genomic DNA at sites before and after genes. Science 225, 625–8.CrossRefGoogle ScholarPubMed
McGarvey, M. J., Sheybani, E., Loche, M. P., Perrin, L. & Mach, B. (1984). Identification and expression in Escherichia coli of merozoite stage-specific genes of the human malarial parasite Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 81, 3690–4.CrossRefGoogle ScholarPubMed
Muskavitch, M. A. T. & Hogness, D. S. (1982). An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell 29, 1041–51.CrossRefGoogle Scholar
Odink, K. G., Lockyer, M. J., Nicholls, S. C., Hillman, Y., Freeman, R. R. & Holder, A. A. (1984). Expression of cloned cDNA for a major surface antigen of Plasmodium falciparum merozoites. FEBS Letters 173, 108–12.CrossRefGoogle Scholar
Ohno, S. (1984). Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence. Proceedings of the National Academy of Sciences, USA 81, 2421–5.CrossRefGoogle ScholarPubMed
Oka, M., Aikawa, M., Freeman, R. R., Holder, A. A. & Fine, E. (1984). Ultrastructural localization of protective antigens of Plasmodium yoellii merozoites by the use of monoclonal antibodies and ultrathin cryomicrotomy. American Journal of Tropical Medicine and Hygiene 33, 342–7.CrossRefGoogle Scholar
Ozaki, L. S., Svec, P., Nussenzweig, R. S., Nussenzweig, V. & Godson, G. N. (1983). Structure of the Plasmodium knowlesi gene coding for the circumsporozoite protein. Cell 34, 815–22.CrossRefGoogle ScholarPubMed
Pedersen, K., Devereux, J., Wilson, J. R., Sheldon, E. & Larkins, B. A. (1982). Cloning and sequence analysis reveal structural variation among related zein genes in maize. Cell 29, 1015–26.CrossRefGoogle ScholarPubMed
Perkins, M. E. (1984). Surface proteins of Plasmodium falciparum, merozoites binding to the erythrocyte receptor, glycophorin. Journal of Experimental Medicine 160, 768–98.CrossRefGoogle Scholar
Perlmann, H., Berzins, K., Wahlgren, M., Carlsson, J., Björkman, A., Patarroyo, M. E. & Perlmann, P. (1984). Antibodies in malarial sera to antigens in the membrane of erythrocytes infected with early asexual stages of Plasmodium falciparum. Journal of Experimental Medicine 159, 16861704.CrossRefGoogle ScholarPubMed
Perrin, L. H. & Dayal, R. (1982). Immunity to asexual erythrocytic stages of Plasmodium falciparum: role of defined antigens in the humoral response. Immunological Reviews 61, 245–69.CrossRefGoogle ScholarPubMed
Perrin, L. H., Merkli, B., Loche, M., Chizzolini, C., Smart, J. & Richle, R. (1984). Antimalarial immunity in Saimiri monkeys. Journal of Experimental Medicine 160, 441–51.CrossRefGoogle ScholarPubMed
Potocnjak, P., Yoshida, N., Nussenzweig, R. S. & Nussenzweig, V. (1980). Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. Journal of Experimental Medicine 151, 1504–13.CrossRefGoogle ScholarPubMed
Ravetch, J. V., Feder, R., Pavlovec, A. & Blobel, G. (1984). Primary structure and genomic organization of the histidine-rich protein of the malaria parasite, Plasmodium lophurae. Nature, London 312, 616–20.CrossRefGoogle ScholarPubMed
Ravetch, J. V., Kochan, J. & Perkins, M. (1985). Isolation of the gene for a glycophorin-binding protein implicated in erythocyte invasion by a malaria parasite. Science 227, 1593–7.CrossRefGoogle Scholar
Saint, R. B. & Bowtell, D.L. (1985). Methods from the expression, immunological detection and analysis of foreign genes cloned in Escherichia coli. Analytical Biochemistry (in the Press).Google Scholar
Saint, R. B., Coppel, R. L., Cowman, A. F., Brown, G. V., Shi, P. T., Barzaga, N., Kemp, D. J. & Anders, R. F. (1985). Changes in repeat number, sequence and reading frame in S-antigen genes of Plasmodium falciparum (in preparation).Google Scholar
Santoro, F., Cochran, A. H., Nussenzweig, V., Nardin, E. H., Nussenzweig, R. S., Gwadz, R. W. & Fevreira, A. (1983). Structural similarities among the protective antigens of sporozoites from different species of malaria parasites. Journal of Biological Chemistry 258, 3341–5.CrossRefGoogle ScholarPubMed
Saul, A., Cooper, J., Ingram, L., Anders, R. F., Brown, G. V. (1985). Invasion of erthrocytes in vitro by Plasmodium falciparum can be inhibited by a monoclonal antibody directed against an S antigen. Parasite Immunology (in the Press).CrossRefGoogle Scholar
Schwartz, D. C. & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gradient electrophoresis. Cell 37, 6775.CrossRefGoogle Scholar
Sharma, S., Svec, P., Mitchell, G. H. & Godson, G. N. (1965). Diversity of circumsporozoite antigen genes from two strains of the malarial parasite Plasmodium knowlesi. Science 229, 779–82.CrossRefGoogle Scholar
Sinden, R. E. (1978). Rodent Malaria (ed. Killick-Kendrick, R. and Peters, W.) pp. 213244. London: Academic Press.Google Scholar
Smith, G. P. (1976). Evolution of repeated DNA sequences by unequal cross-over. Science 191, 528–35.CrossRefGoogle Scholar
Stahl, H. D., Bianco, A. E., Crewther, P. E., Burkot, T., Coppel, R. L., Brown, G. V., Anders, R. F. & Kemp, D. J. (1985 c). An asparagine-rich protein from blood stages of Plasmodium falciparum shares determinants with sporozoites. Nucleic Acids Research (submitted).CrossRefGoogle Scholar
Stahl, H. D., Bianco, A. E., Crewther, P. E., Anders, R. F., Kyne, A. P., Coppel, R. L., Mitchell, G. F., Kemp, D. J. & Brown, G. V. (1985d). Sorting large numbers of clones expressing Plasmodium falciparum antigens in Escherichia coli by differential antibody screening. Molecular Biology and Medicine (submitted).Google Scholar
Stahl, H. D., Coppel, R. L., Brown, G. V., Saint, R. B., Lingelbach, K., Cowman, A. F., Anders, R. F. & Kemp, D. J. (1984). Differential antibody screening of cloned Plasmodium falciparum sequences expressed in Escherichia coli. Procedure for isolation of defined antigens and analysis of human antisera. Proceedings of the National Academy of Sciences, USA 81, 2456–60.CrossRefGoogle ScholarPubMed
Stahl, H. D., Crewther, P. E., Anders, R. F., Brown, G. V., Coppel, R. L., Bianco, A. E., Mitchell, G. F. & Kemp, D. J. (1985 a). Interspersed blocks of repetitive and charged amino acids in a dominant immunogen of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 82, 543–7.CrossRefGoogle Scholar
Stahl, H. D., Kemp, D. J., Crewther, P. E., Scanlon, D., Woodrow, G., Brown, G. V., Bianco, A. E., Anders, R. F. & Coppel, R. L. (1985 b). Sequence of a cDNA encoding a small polymorphic histidine and alanine-rich protein from Plasmodium falciparum. Nucleic Acids Research 13, 7837–46.CrossRefGoogle ScholarPubMed
Tait, A. (1981). Analysis of protein variation in Plasmodium falciparum by two-dimensional electrophoresis. Molecular and Biochemical Parasitology 2, 205–18.CrossRefGoogle Scholar
Udeniya, I. J., Miller, L. H., McGregor, I. A. & Jensen, J. B. (1983). Plasmodium falciparum strain-specific antibodies block binding of infected erythrocytes to amelanotic melanoma cells. Nature, London 303, 429–31.CrossRefGoogle Scholar
Udeinya, I. J., Schmidt, J. A., Aikawa, M., Miller, L. H. & Green, I. (1981). Falciparum malaria-infected erythrocytes specifically bind to cultured human endothelial cells. Science 213, 555–7.CrossRefGoogle ScholarPubMed
Van Der Ploeg, L. H. T., Smits, M., Ponnudurai, T., Vermeulen, A., Meuwissen, J. H. E. Th. & Langsley, G. (1985). Chromosome-sized DNA molecules of Plasmodium falciparum. Science (in the Press).CrossRefGoogle Scholar
Wåhlin, B., Wahlgren, M., Perlmann, H., Berzins, K., Björkman, A., Patarroyo, M. E. & Perlmann, P. (1984). Human antibodies to a Mr 155000 Plasmodium falciparum antigen efficiently inhibit merozoite invasion. Proceedings of the National Academy of Science, USA 81, 7912–16.CrossRefGoogle Scholar
Walliker, D. (1983). The genetic basis of diversity of malaria parasites. Advances in Parasitology 22, 217–59.CrossRefGoogle ScholarPubMed
Wilson, R. J. M. (1980). Serotyping Plasmodium falciparum malaria with S-antigens. Nature, London 284, 451–2.CrossRefGoogle ScholarPubMed
Wilson, R. J. M., McGregor, I. A., Hall, P., Williams, K. & Bartholomew, R. (1969). Antigens associated with Plasmodium falciparum infections in man. Lancet ii, 201–5.CrossRefGoogle Scholar
Wilson, R. J. M., McGregor, I. A. & Williams, K. (1975). Occurrence of S-antigens in serum in Plasmodium falciparum infections in man. Transactions of the Royal Society of Tropical Medicine and Hygiene 69, 453–9.CrossRefGoogle ScholarPubMed
Ycas, M. (1972). De novo origin of periodic proteins. Journal of Molecular Evolution 2, 1727.CrossRefGoogle ScholarPubMed