Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T17:49:26.589Z Has data issue: false hasContentIssue false

Variation in resistance to isometamidium chloride and diminazene aceturate by clones derived from a stock of Trypanosoma congolense

Published online by Cambridge University Press:  06 April 2009

A. S. Peregrine
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
G. Knowles
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
A. I. Ibitayo
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
J. R. Scott
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
S. K. Moloo
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
N. B. Murphy
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya

Summary

Nine clones were derived from a drug-resistant Trypanosoma congolense stock (IL 2856) and characterized in mice for their sensitivity to isometamidium chloride and diminazene aceturate. All clones were derived from the stock without drug selection and expressed high levels of resistance to isometamidium chloride (50% curative dose [CD50] values ranging from 1·5 to 5·1 mg/kg) and intermediate to high levels of resistance to diminazene aceturate (CD50 values ranging from 5·1 to 21·0 mg/kg). By contrast, the isometamidium chloride and diminazene aceturate CD50 values for a drug-sensitive clone, T. congolense IL 1180, were 0·018 mg/kg and 2·3 mg/kg, respectively. For both drugs, there appeared to be significantly different levels in expression of drug resistance amongst the 9 clones derived from IL 2856. Isoenzyme analysis of 7 enzymes showed that all 9 clones expressed the same electrophoretic variants. Thus, all 9 clones were identical for these phenotypic markers. The clone which expressed the highest level of resistance to isometamidium in mice (IL 3270) was transmitted to Boran cattle via the bite of infected Glossina morsitans centralis. IL 3270 produced an infection rate in tsetse of 5·0%. The resulting infections in cattle were shown to be resistant to intramuscular treatment with 2·0 mg/kg isometamidium chloride and 14·0 mg/kg diminazene aceturate. This contrasts with doses of 0·25 mg/kg isometamidium chloride or 3·5 mg/kg diminazene aceturate which are deemed sufficient to cure fully sensitive infections. Finally, 9 clones (subclones) were derived from IL 3270 and characterized in mice for their sensitivity to isometamidium chloride. Seven of the subclones expressed a significantly lower level of resistance to isometamidium than the parental clone and amongst the subclones there was significant variation in resistance. Thus, expression of a high level of resistance to isometamidium appears to be unstable in the rodent host and at least a component of the genetic determinant(s) for this drug-resistant phenotype is (are) likely to be unstable.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Authie, E. (1984). Mise en évidence d'une résistance aux trypanocides parmi des souches de Trypanosoma congolense récemment isolées au Burkina. Revue d'Elevage et de Medécine Vétérinaire des Pays Tropicaux 37 (No. spécial), 219–35.Google Scholar
Barry, J. D. & Gathuo, H. (1984). Antigenic variation in Trypanosoma vivax: isolation of a serodeme. Parasitology 89, 4958.CrossRefGoogle ScholarPubMed
Barry, J. D., Le Ray, D. & Herbert, W. J. (1979). Infectivity and virulence of Trypanosoma (Trypanozoon) brucei for mice. IV. Dissociation of virulence and variable antigen type in relation to pleomorphism. Journal of Comparative Pathology 89, 465–70.CrossRefGoogle ScholarPubMed
Beverley, S. M., Ellenberger, T. E., Iovannisci, D. M., Kapler, G. M., Petrillo-Peixoto, M. & Sina, B. J. (1988). Gene amplification in Leishmania. In The Biology of Parasitism: A Molecular and Immunological Approach (ed. England, P. T. & Sher, A.) pp. 314–48. New York: A. R. Liss, Inc.Google Scholar
Brown, H. C., Ross, C. A., Holmes, P. H., Luckins, A. G. & Taylor, A. M. (1987). Adaptation of Trypanosoma congolense stocks to in vitro culture does not change their sensitivity to isometamidium. Acta Tropica 44, 373–4.Google Scholar
Brown, P. C., Tlsty, T. D. & Schimke, R. T. (1983). Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea. Molecular and Cellular Biology 3, 1097–107.Google ScholarPubMed
Finelle, P. & Yvore, P. (1962). Quelques observations sur la chimioresistance. In International Scientific Council for Trypanosomiasis Research, 9th meeting,Conakry, Guinea,CCTA publication No. 88, pp. 107–10.Google Scholar
Gitatha, S. K. (1979). T. congolense (Shimba hills) resistant to various trypanocidal drugs. In International Scientific Council for Trypanosomiasis Research and Control, 16th meeting,Yaounde, Cameroon,OAU/STRC publication No. 111, pp. 257–63.Google Scholar
Gray, A. R. & Roberts, C. J. (1971). The cyclical transmission of strains of Trypanosoma congolense and T. vivax resistant to normal therapeutic doses of trypanocidal drugs. Parasitology 63, 6789.CrossRefGoogle Scholar
Hawking, F. (1963). Drug-resistance of Trypanosoma congolense and other trypanosomes to quinapyramine, phenanthridines, Berenil and other compounds in mice. Annals of Tropical Medicine and Parasitology 57, 262–82.CrossRefGoogle ScholarPubMed
Jones-Davies, W. J. (1967). The discovery of Berenil-resistant Trypanosoma vivax in Northern Nigeria. The Veterinary Record 80, 531–2.Google Scholar
Kaminsky, R. & Zweygarth, E. (1989). Effect of in vitro cultivation on the stability of resistance of Trypanosoma brucei brucei to diminazene, isometamidium, quinapyramine and Mel B. Journal of Parasitology 75, 42–5.CrossRefGoogle ScholarPubMed
Katende, J. M., Musoke, A. J., Nantulya, V. M. & Goddeeris, B. M. (1987). A new method of fixation and preservation of trypanosomal antigens for use in the indirect immunofluorescent antibody test for diagnosis of bovine trypanosomiasis. Tropical Medicine and Parasitology 38, 41–4.Google ScholarPubMed
Kupper, W. & Wolters, M. (1983). Observations on drug resistance of Trypanosoma (Nannomonas) congolense and Trypanosoma (Duttonella) vivax in cattle at a feedlot in the northern Ivory Coast. Tropenmedizin und Parasitologie 34, 203–5.Google Scholar
Le Bras, J., Deloron, P., Ricour, A., Andrieu, B., Savel, J. & Coulaud, J. P. (1983). Plasmodium falciparum: drug sensitivity in vitro of isolates before and after adaptation to continuous culture. Experimental Parasitology 56, 914.CrossRefGoogle ScholarPubMed
Maclennan, K. J. R. & Na'ISA, B. K. (1970). Relapsing Trypanosoma vivax infections in Nigerian Zebu cattle treated with diminazene aceturate. Tropical Animal Health and Production 2, 189–95.CrossRefGoogle Scholar
Maloo, S., Chema, S., Connor, R., Durkin, J., Kimotho, P., Maehl, Mukendi, F., Murray, M., Rarieya, M. & Trail, J. (1987) Efficacy of chemoprophylaxis for East African Zebu cattle exposed to trypanosomiasis in village herds in Kenya. In International Scientific Council for Trypanosomiasis Research and Control 19th meeting, Lome, Togo, OAU/STRC publication No. 114, pp. 282–7.Google Scholar
Mbwambo, H. A., Mella, P. N. P. & Lekaki, K. A. (1988). Berenil (diminazene aceturate)-resistant Trypanosoma congolense in cattle under natural tsetse challenge at Kibaha Tanzania. Acta Tropica 45, 239–44.Google ScholarPubMed
Moloo, S. K. & Kutuza, S. B. (1990). Expression of resistance to isometamidium and diminazene in Trypanosoma congolense in Boran cattle infected by Glossina morsitans centralis. Acta Tropica 47, 7989.CrossRefGoogle ScholarPubMed
Murray, M., Murray, P. K. & McIntyre, W. I. M. (1977). An improved parasitological technique for the diagnosis of African trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 325–6.CrossRefGoogle ScholarPubMed
Nantulya, V. M., Musoke, A. J., Rurangirwa, F. R. & Moloo, S. K. (1984). Resistance of cattle to tsetse-transmitted challenge with Trypanosoma brucei or Trypanosoma congolense after spontaneous recovery from syringe passaged infections. Infection and Immunity 43, 735–8.CrossRefGoogle ScholarPubMed
Nyeko, J. H. P., Golder, T. K., Otieno, L. H. & Ssenyonga, G. S. Z. (1989). Trypanosoma congolense: drug resistance during cyclical transmissions in tsetse flies and syringe passage in mice. Experimental Parasitology 69, 357–62.CrossRefGoogle ScholarPubMed
Paris, J., Murray, M. & McOdimba, F. (1982). A comparative evaluation of the parasitological techniques currently available for the diagnosis of African trypanosomiasis in cattle. Acta Tropica 39, 307–16.Google ScholarPubMed
Peregrine, A. S., Ogunyemi, O., Whitelaw, D. D., Holmes, P. H., Moloo, S. K., Hirumi, H., Urquhart, G. M. & Murray, M. (1988). Factors influencing the duration of isometamidium chloride (Samorin) prophylaxis against experimental challenge with metacyclic forms of Trypanosoma congolense. Veterinary Parasitology 28, 5364.CrossRefGoogle ScholarPubMed
Pinder, M. & Authie, E. (1984). The appearance of isometamidium resistant Trypanosoma congolense in West Africa. Acta Tropica 41, 247–52.Google ScholarPubMed
Schonefeld, A. R., Rottcher, D. & Moloo, S. K. (1987). The sensitivity to trypanocidal drugs of Trypanosoma vivax isolated in Kenya and Somalia. Tropical Medicine and Parasitology 38, 177–80.Google ScholarPubMed
Scott, J. M. & Pegram, R. G. (1974). A high incidence of Trypanosoma congolense strains resistant to homidium bromide in Ethiopia. Tropical Animal Health and Production 6, 215–21.CrossRefGoogle ScholarPubMed
Seed, J. R. (1978). Competition among serologically different clones of Trypanosoma brucei gambiense in vivo. Journal of Protozoology 25, 526–9.CrossRefGoogle ScholarPubMed
Sones, K. R., Njogu, A. R. & Holmes, P. H. (1988). Assessment of sensitivity of Trypanosoma congolense to isometamidium chloride: a comparison of tests using cattle and mice. Acta Tropica 45, 153–64.Google ScholarPubMed
Sprent, P. (1989). Applied Nonparametric Statistical Methods. London: Chapman & Hall Ltd.Google Scholar
Thaithong, S. (1983). Clones of different sensitivities in drug-resistant isolates of Plasmodium falciparum. Bulletin of the World Health Organization 61, 709–12.Google ScholarPubMed
Trail, J. C. M., Murray, M., Sones, K., Jibbo, J. M. C., Durkin, J. & Light, D. (1985). Boran cattle maintained by chemoprophylaxis under trypanosomiasis risk. Journal of Agricultural Science 105, 147–66.CrossRefGoogle Scholar
Webster, H. K., Thaithong, S., Pavanand, K., Yongvanitchit, K., Pinswasdi, C. & Boudreau, E. F. (1985). Cloning and characterization of mefloquine-resistant Plasmodium falciparum from Thailand. American Journal of Tropical Medicine and Hygiene 34, 1022–7.CrossRefGoogle ScholarPubMed
Whiteside, E. F. (1958). The maintenance of cattle in tsetse-infested country. A summary of four years' experience in Kenya. In International Scientific Council for Trypanosomiasis Research, 7th meeting, Bruxelles, Belgium, CCTA publication No. 41, pp. 8390.Google Scholar
Whiteside, E. F. (1960). Recent work in Kenya on the control of drug-resistant cattle trypanosomiasis. In International Scientific Council for Trypanosomiasis Research, 8th meeting, Jos, Nigeria, CCTA publication No. 62, pp. 141–53.Google Scholar
Wraxall, B. G. D. & Culliford, B. J. (1968). A thin layer starch gel method for enzyme typing blood strains. Journal of the Forensic Science Society 8, 81.CrossRefGoogle Scholar
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed