Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T06:29:35.098Z Has data issue: false hasContentIssue false

Use of genomic DNA restriction fragment length differences to identify nematode species

Published online by Cambridge University Press:  06 April 2009

J. Curran
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, Vancouver, B.C. Canada V5A 1S6
D. L. Baillie
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, Vancouver, B.C. Canada V5A 1S6
J. M. Webster
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, Vancouver, B.C. Canada V5A 1S6

Extract

Restriction endonuclease digestion of genomic DNA generates DNA fragments of unique size, dependent upon the particular base sequence. Following fractionation by agarose gel electrophoresis, repetitive DNA can be visualized as distinct bands in stained gels and the restriction fragment length of such bands used as diagnostic characters. Restriction fragment length differences were detected between species within the genera Trichinella, Caenorhabditis, Romanomermis, Steinernema (syn. Neoaplectana) and Meloidogyne. This technique provides a new tool for the taxonomist, which is independent of phenotypic variation and it enables the rapid and reliable separation of closely related species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coen, E. S., Thoday, J. M. & Dover, G. A. (1982). Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature, London 295, 564–8.CrossRefGoogle ScholarPubMed
Dick, T. A. & Chadee, K. (1983). Interbreeding and gene flow in the genus Trichinella. Journal of Parasitology 69, 176–80.CrossRefGoogle ScholarPubMed
Dover, G., Brown, S., Coen, E., Dallas, J., Strachan, T. & Trick, M. (1982). The dynamics of genome evolution and species differentiation. In Genome Evolution (ed. Dover, G. A. and Flavell, R. B.), pp. 344372. New York: Academic Press.Google Scholar
Files, J. G. & Hirsh, D. (1981). Ribosomal DNA of Caenorhabditis elegans. Journal of Molecular Biology 149, 223–40.CrossRefGoogle ScholarPubMed
Galloway, T. D. & Brust, R. A. (1982). Cross-mating of Romanomermis culicivorax and R. communensis (Nematoda: Mermithidae). Journal of Nematology 4, 274–6.Google Scholar
Hussey, R. S. (1979). Biochemical systematics of nematodes – a review. Helminthological Abstracts 48, 141–8.Google Scholar
Poinar, G. O. Jr. (1979). Nematodes for Biological Control of Insects. Florida: CBC Press Inc.Google Scholar
Rose, A. M., Baillie, D. L., Candido, E. P. M., Beckenbach, K. A. & Nelson, D. (1982). The linkage mapping of cloned restriction fragment length differences in Caenorhabditis elegans. Molecular and General Genetics 188, 286–91.CrossRefGoogle Scholar
Rose, M. R. & Doolittle, W. F. (1983). Molecular biological mechanisms of speciation. Science 220, 157–62.CrossRefGoogle Scholar
Rosenzweig, B., Liao, L. W. & Hirsh, D. (1983). Sequence of the C. elegans transposable element Tel. Nucleic Acid Research, 2 4201–9.CrossRefGoogle Scholar