Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:57:04.117Z Has data issue: false hasContentIssue false

Ultrastructure and microanalyses of the protoscolex hooks of Echinococcus granulosus

Published online by Cambridge University Press:  06 April 2009

S. A. Smith
Affiliation:
Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG, UK
K. S. Richards
Affiliation:
Department of Biological Sciences, University of Keele, Keele, Staffs. ST5 5BG, UK

Abstract

The rostellar distal cytoplasm of Echinococcus granulosus protoscoleces is characterized by extensive basal membrane infoldings, prominent hemidesmosomes and is subtended by a lamina reticularis with microfibrils of approximately 10 nm diameter that occasionally show a 55 nm banding periodicity. The rostellar hooks, in 2 rows, each have a blade, guard and handle region and possess a central amorphous pulp, a middle microfibrillar medulla with microfibrils of approximately 4 nm diameter, and a complex outer cortex in all but the proximal region of the guard and the base of the handle. In these regions additional material, of similar electron density to the medulla, but lacking the fibrillar substructure, occurs and gives the areas a lobed appearance. Energy-dispersive X-ray microanalysis of whole hooks demonstrated the presence of sulphur and trace quantities of phosphorus. X-ray near-edge absorption spectra resembled those of cystine, feather and hair and showed the sulphur to be predominantly in the form of disulphide linkages. X-ray diffraction patterns of whole hook preparations revealed 2 diffuse rings with equatorial spacings of 7·99 Å and 15·22 Å, thus differing from vertebrate keratins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caley, J. (1974). The functional significance of scolex retraction and subsequent cyst formation in the cysticercoid larva of Hymenolepis diminuta. Parasitology 68, 207–27.CrossRefGoogle Scholar
Chew, M. W. K. (1983). Taenia crassiceps ultrastructural observations on the oncosphere and associated structures. Journal of Helminthology 57, 101–13.CrossRefGoogle ScholarPubMed
Clapham, P. A. (1942). On two new Coenuri from Africa, and a note on the development of the hooks. Journal of helminthology 20, 2530.CrossRefGoogle Scholar
Collin, W. K. (1968). Electron microscopy studies of the muscle and hook systems of hatched oncospheres of Hymenolepis citelli McLeod, 1933 (Cestoda: Cyclophyllidea). Journal of Parasitology 54, 7888.CrossRefGoogle ScholarPubMed
Conradson, S. D., Burgess, B. K., Newton, W. E., Hodgson, K. O., McDonald, J. W., Rubinson, J. F., Gheller, S. F., Mortenson, L. E., Adams, M. W. W., Mascharak, P. K., Armstrong, W. A. & Holm, R. H. (1985). Structural insights from the Mo K-edge X-ray absorption near edge structure of the iron-molybdenum protein of nitrogenase and its iron-molybdenum cofactor by comparison with synthetic Fe-Mo-S clusters. Journal of the American Chemical Society 107, 7935–40.CrossRefGoogle Scholar
Crusz, H. (1947). The early development of the rostellum of Cysticercus fasciolaris Rud., and the chemical nature of the hooks. Journal of Parasitology 33, 8798.CrossRefGoogle ScholarPubMed
Crusz, H. (1948). Further studies on the development of Cysticercus fasciolaris and Cysticercus pisiformis with special reference to the growth and sclerotization of the rostellar hooks. Journal of Helminthology 22, 179–99.CrossRefGoogle Scholar
Dvorak, J. E. (1969 a). Hydatigera taeniaeformis: Strobilocerci hooks. 1. Collection and preparation; elemental, amino acid, and infrared spectrophotometric analyses. Experimental Parasitology 26, 111–21.CrossRefGoogle ScholarPubMed
Dvorak, J. A. (1969 b). Hymenolepis microstoma: Interference microscopy of embryonic lateral hooks. II. Structure and reaction to 2-mercaptoethanol. Experimental Parasitology 26, 101–10.CrossRefGoogle ScholarPubMed
Eckert, J., Thompson, R. C. A., Michael, S. A., Kumaratilake, L. M. & El-Sawah, H. M. (1989). Echinococcus granulosus of camel origin: development in dogs and parasite morphology. Parasitology Research 75, 536–44.CrossRefGoogle ScholarPubMed
Fairweather, I. & Threadgold, L. T. (1981). Hymenolepis nana: the fine structure of the ‘penetration gland’ and nerve cells within the oncosphere. Parasitology 82, 445–58.CrossRefGoogle ScholarPubMed
Filshie, B. K. & Rogers, G. E. (1962). An electron microscope study of the fine structure of feather keratin. Journal of Cell Biology 13, 111.CrossRefGoogle ScholarPubMed
Frank, P., Hedman, B., Carlson, R. M. K., Tyson, T. A., Rose, L. A. & Hodgson, K. O. (1987). A large reservoir of sulfate and sulfonate residues within plasma cells from Ascidia ceratodes, revealed by X-ray absorption near-edge structure spectroscopy. Biochemistry 26, 4975–9.CrossRefGoogle Scholar
Fraser, R. D. B., Macrae, T. P. & Rogers, G. E. (1972). Keratins. Their Composition, Structure and Biosynthesis. Illinois: Thomas Books.Google Scholar
Gallagher, I. H. C. (1964). Chemical composition of hooks isolated from hydatid scolices. Experimental Parasitology 15, 1100–17.CrossRefGoogle ScholarPubMed
Hedman, B., Frank, P., Gheller, S. F., Rose, A. L., Newton, W. E. & Hodgson, K. O. (1988). New structural insights into the iron-molybdenum cofactor from Azotobacter vinelandii nitrogenase through sulfur K and molybdenum L X-ray absorption edge studies. Journal of the American Chemical Society 110, 3798–805.CrossRefGoogle Scholar
Hobbs, R. P., Lymbery, A. J. & Thompson, R. C. A. (1990). Rostellar hook morphology of Echinococcus granulosus (Batsch, 1786) from natural and experimental Australian hosts, and its implications for strain recognition. Parasitology 101, 273–81.CrossRefGoogle ScholarPubMed
Holmes, S. D. & Fairweather, I. (1982). Hymenolepis diminuta: the mechanism of egg hatching. Parasitology 85, 237–50.CrossRefGoogle ScholarPubMed
Holy, J. M. & Oaks, J. A. (1987). Mechanical integration of muscle, tegument and subtegumental tissues by anchoring fibril and microfibrils in the cestode Hymenolepsis diminuta. Tissue and Cell 19, 881–91.CrossRefGoogle Scholar
Jha, R. K. & Smyth, J. D. (1971). Ultrastructure of the rostellar tegument of Echinococcus granulosus with special reference to the biogenesis of mitochondria. International Journal for Parasitology 1, 169–77.CrossRefGoogle Scholar
Kumaratilake, L. M., Thompson, R. C. A. & Eckert, J. (1986). Echinococcus granulosus of equine origin from different countries possess uniform morphological characteristics. International Journal for Parasitology 16, 529–40.CrossRefGoogle ScholarPubMed
Lumsden, R. D. & Hildreth, M. B. (1983). The fine structure of adult tapeworms. In The Biology of the Eucestoda. Vol. 1. (ed. Arme, C. & Pappas, P. W.), pp. 177233. London: Academic Press.Google Scholar
Lumsden, R. D., Voge, M. & Sogandares-Bernal, F. (1982). The metacestode integument: fine structure, development, topochemistry, and interactions with the host. In Cysticercosis: Present State of Knowledge and Perspectives, (ed. Flisser, A., Willms, K., Laclette, J. P., Larralde, C., Ridaura, C. & Beltrá, F.), pp. 307–61. New York, London: Academic Press.Google Scholar
Lyons, K. M. (1966). The chemical nature and evolutionary significance of monogenean attachment sclerites. Parasitology 56, 63100.CrossRefGoogle ScholarPubMed
Mount, P. M. (1970). Histogenesis of the rostellar hooks of Taenia crassiceps (Zeder, 1800) (Cestoda). Journal of Parasitology 56, 947–61.CrossRefGoogle ScholarPubMed
Pence, D. B. (1967). The fine structure and histochemistry of the infective eggs of Dipylidium caninum. Journal of Parasitology 53, 1041–54.CrossRefGoogle ScholarPubMed
Pence, D. B. (1970). Electron microscope and histochemical studies on the eggs of Hymenolepis diminuta. Journal of Parasitology 56, 8497.CrossRefGoogle ScholarPubMed
Richards, K. S. (1984). Annelida: Cuticle. In Biology of the Integument Vol. 1 (ed. Bereiter-Hahn, J., Matolsty, A. G. & Richards, K. S.), pp. 310–22. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Rogan, M. T. & Richards, K. S. (1987). Echinococcus granulosus: changes in the surface ultrastructure during protoscolex formation. Parasitology 94, 359–67.CrossRefGoogle ScholarPubMed
Roth, S. I. & Jones, W. A. (1970). The ultrastructure of epidermal maturation in the skin of the boa constrictor (Constrictor constrictor). Journal of Ultrastructural Research 32, 6993.CrossRefGoogle ScholarPubMed
Spiro, C. L., Wong, J., Lytle, F. W., Greegor, R. B., Maylotte, D. H. & Lamson, S. H. (1984). X-ray absorption spectroscopic investigation of sulfur sites in coal: organic sulfur identification. Science 236, 4850.CrossRefGoogle Scholar
Swiderski, Z. (1973). Electron microscopy and histochemistry of oncospheral hook formation by the cestode Catenotaenia pusilla. International Journal for Parasitology 3, 2733.CrossRefGoogle ScholarPubMed
Swiderski, Z. (1976). Oncospheral hook morphogenesis in the davaineid cestode Inermicapsifera madagascariensis (Davine, 1870) Baer, 1956. International Journal for Parasitology 6, 495504.CrossRefGoogle Scholar
Swiderski, Z. (1983). Echinococcus granulosus: hook-muscle systems and cellular organisation of infective oncospheres. International Journal for Parasitology 13, 289–99.CrossRefGoogle ScholarPubMed
Torre-Blanco, A. & Toledo, I. (1981). The isolation, purification, and characterization of the collagen of Cysticercus cellulosae. Journal of Biological Chemistry 256, 5926–30.CrossRefGoogle ScholarPubMed
Ubelaker, J. E. (1983). The morphology, development and evolution of tapeworm larvae. In Biology of the Eucestoda. Vol. 1. (ed. Arme, C. & Pappas, P. W.), pp. 235–96. London: Academic Pres.Google Scholar