Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T22:38:55.681Z Has data issue: false hasContentIssue false

Ultrastructural observations on oogenesis and shell formation in Gyrinicola batrachiensis (Walton, 1929) (Nematoda: Oxyurida)

Published online by Cambridge University Press:  06 April 2009

M. L. Adamson
Affiliation:
École Pratique des Hautes Études et Laboratoire de Zoologie (Vers), Muséum national d'Histoire naturelle associés au CNRS 61, rue de Buff on, 75231 Paris Cedex 05

Summary

Individual females of Gyrinicola batrachiensis produce 2 types of eggs: thin-shelled auto-infective eggs are produced in the ventral horn of the reproductive tract and thick-shelled eggs (transmission agents) are produced in the dorsal horn. Fine structure of oogenesis and egg-shell formation in the 2 horns of the reproductive tract were studied and compared. Early stages of oogenesis were similar in both horns but mature oocytes differed considerably. Those in the dorsal horn were larger than those in the ventral horn; they contained large numbers of lipid droplets, peripheral patches of glycogen and several types of cytoplasmic granules presumably acting as yolk or playing a role in shell formation. Mature oocytes in the ventral horn contained large amounts of glycogen, relatively few lipid droplets and large multivesicular bodies. Four shell layers formed around ova in the dorsal horn: a vitelline layer, a lipid layer, a chitinous layer and an outer protein coat similar to that described in other oxyurids. Only the vitelline layer formed around thin-shelled eggs. Thick-shelled eggs did not embryonate in utero but thin-shelled eggs nearest the vagina contained larvae. The first moult in eggs of G. batrachiensis was described in a previous communication and it is suggested here that the thin fibrous layer loosely applied to the cuticle of infective larvae in thin-shelled eggs is the moulted 2nd-stage cuticle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, M. L. (1981 a). Gyrinicola batrachiensis (Walton, 1929) n. comb. (Oxyuroidea; Nematoda) from tadpoles in eastern and central Canada. Canadian Journal of Zoology 59, 1344–50.CrossRefGoogle Scholar
Adamson, M. L. (1981 b). Development and transmission of Gyrinicola batrachiensis (Walton, 1929) Adamson, 1981 (Pharyngodonidae; Oxyuroidea). Canadian Journal of Zoology 59, 1351–67.CrossRefGoogle Scholar
Adamson, M. L. (1981 c). Studies on gametogenesis in Gyrinicola batrachiensis (Walton, 1929) (Oxyuroidea; Nematoda). Canadian Journal of Zoology 59, 1368–76.CrossRefGoogle Scholar
Adamson, M. L. (1981 d). Seasonal changes in populations of Gyrinicola batrachiensis (Walton, 1929) in wild tadpoles. Canadian Journal of Zoology 59, 1377–86.CrossRefGoogle Scholar
Anya, A. O. (1976). Physiological aspects of reproduction in nematodes. Advances in Parasitology 14, 268351.Google ScholarPubMed
Barrett, J. C., Ward, C. W. & Fairbairn, D. (1970). The glycoxylate cycle and the conversion of triglycerides to carbohydrates in developing eggs of Ascaris lumbricoides. Comparative Biochemistry and Physiology 35, 577–86.CrossRefGoogle Scholar
Bird, A. F. (1971). The Structure of Nematodes. New York and London: Academic Press.Google Scholar
Bird, A. F. (1976). The development and organization of skeletal structures in nematodes. In The Organization of Nematodes (ed. Croll, N. A.), pp. 107137. New York, London and San Francisco: Academic Press.Google Scholar
Chitwood, B. G. & Chitwood, M. B. (1950). The reproductive system. In Introduction to Nematology (ed. Chitwood, B. G. and Chitwood, M. B.), pp. 136159. Baltimore: University Park Press.Google Scholar
Dalq, A. M. (1963). The relation of lysosomes to the in vivo metachromatic granules. In Ciba Foundation Symposium on Lysosomes (ed. de Reuck, A. V. S. and Cameron, M. P.). London: J. and A. Churchill.Google Scholar
Fairbairn, D. (1957). The biochemistry of Ascaris. Experimental Parasitology 6, 491554.CrossRefGoogle ScholarPubMed
Foor, W. E. (1967). Ultrastructural aspects of oocyte development in Ascaris lumbricoides. Journal of Parasitology 53, 1245–63.CrossRefGoogle ScholarPubMed
Foor, W. E. (1972). Origin and possible utilization of small dense granules in oocytes of Ascaris suum. Journal of Parasitology 58, 524–38.CrossRefGoogle ScholarPubMed
Harada, R., Maeda, T., Nakashima, A., Sadokata, Y., Ando, M., Yonamine, K., Otsuji, Y. & Sato, H. (1970). Electron microscopical studies on the mechanism of oogenesis and fertilization in Dirofilaria immitis. In Recent Advances in Researches on Filariasis and Schistosomiasis in Japan (ed. Sasa, M.), pp. 99121. Baltimore: University Park Press.Google Scholar
Inatomi, S. (1957). A study on the structure of the egg shell of Enterobius vermicularis (Linnaeus, 1758) Leach, 1853 with electron microscope. Acta Medica Okayama 11, 1822.Google Scholar
Lee, C. C. (1975). Dirofilaria immitis: Ultrastructural aspects of oocyte development and zygote formation. Experimental Parasitology 37, 449–68.CrossRefGoogle ScholarPubMed
Lee, D. L. & Lestan, P. (1971). Oogenesis and egg shell formation in Heterakis gallinarum (Nematoda). Journal of Zoology 164, 189–96.CrossRefGoogle Scholar
Lejambre, L. F. & Georoi, J. R. (1970). Influence of fertilization on oogenesis in Ancylostoma caninum. Journal of Parasitology 56, 131–7.CrossRefGoogle Scholar
McClure, M. A. & Bird, A. F. (1976). The tylenchid (Nematoda) egg shell: formation of the egg shell in Meloidogyne javanica. Parasitology 72, 2939.CrossRefGoogle Scholar
McLaren, D. J. (1973). Oogenesis and fertilization in Dipetalonema viteae (Nematoda; Filaroidea). Parasitology 66, 465–72.CrossRefGoogle Scholar
Monné, L. (1962). On the formation of the egg shells of the Ascaroidea, particularly Toxascaris leonina Linst. Arkiv foer Zoologi 15, 277–84.Google Scholar
Paramanov, A. A. (1962). Plant Parasitic Nematodes, vol. 1 (ed. Skrjabin, K. I.). Translated by the Israel Program for Scientific translations, Jerusalem.Google Scholar
Passey, B. F. & Fairbairn, D. (1957). The conversion of fat to carbohydrate during embryonation of Ascaris lumbricoides eggs. Canadian Journal of Biochemistry and Physiology 35, 511–25.CrossRefGoogle Scholar
Prestage, J. J. (1960). The fine structure of the growth region of the ovary in Ascarislumbricoides var. suum with special reference to the rachis. Journal of Parasitology 46, 6978.CrossRefGoogle Scholar
Rogers, R., Ellis, D. S. & Denham, D. A. (1976). Studies with Brugia pahangi 14. Intrauterine development of the microfilaria and a comparison with other filarial species. Journal of Helminthology 50, 251–7.CrossRefGoogle Scholar
Rubin, H. & Trealase, R. N. (1975). Ultrastructure of developing Ascaris larvae undergoing lipid to carbohydrate interconversion. Journal of Parasitology 61, 577–88.CrossRefGoogle ScholarPubMed
Seurat, L. G. (1920). Histoire naturelle des nématodes de la Bérberie. Premier partie, morphologie, développement, éthologie et affinités des nématodes. Université d'Algérie, Faculté des Sciences.Google Scholar
Spurr, A. R. (1969). A low viscosity Epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research 26, 3143.CrossRefGoogle ScholarPubMed
Terry, A., Terry, R. J. & Worms, N. J. (1961). Dipetalonema witei, filarial parasite of the jird, Meriones libyeus. II. The reproductive system, gametogenesis and development of the microfilaria. Journal of Parasitology 47, 703–11.CrossRefGoogle ScholarPubMed
Vogel, R. (1925). Zur Kenntnis der Fortpflanzung, Eireifung, Befruchtung und Furchung von Oxyuris obvelata Bremser. Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, Jena 42, 243–71.Google Scholar
Wal van der, U. P. (1976). The mobilization of the yolk of Lymnaea stagnalis (Mollusca). I. A structural analysis of the differentiation of the yolk granules. Proceedings of the Koninklijke wederlandse Akademie van Wetenschappen, Series Cl, Biological and Medical Sciences 79, 393–104.Google Scholar
Wharton, D. A. (1979 a). Oogenesis and egg shell formation in Aspiculuris tetraptera Schulz (Nematoda; Oxyuroidea). Parasitology 78, 131–43.CrossRefGoogle ScholarPubMed
Wharton, D. A.(1979 b). The structure of the egg-shell of Aspiculuris tetraptera Schulz (Nematoda; Oxyuroidea). Parasitology 78, 145–54.CrossRefGoogle ScholarPubMed
Wharton, D. A. (1979 c). The structure and formation of the egg-shell of Hammerschmidtiella diesingi (Hammerschmidt) (Nematoda; Oxyuroidea). Parasitology 79, 112.CrossRefGoogle Scholar
Wharton, D. A. (1979 d). The structure and formation of the egg-shell of Syphacia obvelata Rudolphi (Nematoda; Oxyuroidea). Parasitology 79, 1328.CrossRefGoogle Scholar
Wharton, D. A. (1980). Nematode egg-shells. Parasitology 81, 447–63.CrossRefGoogle ScholarPubMed
Zacheo, T. B., Castellano, M. A. & Lamberti, F. (1976). Preliminary studies on the ultra-structure of the female gonad of Xiphinema index and X. mediterraneum (Nematoda; Longidoridae). Nematologia Mediterranea 4, 4155.Google Scholar