Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T18:19:48.391Z Has data issue: false hasContentIssue false

UDP-galactose 4′-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors

Published online by Cambridge University Press:  15 August 2014

VERONIKA L. ZINSSER
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
STEFFEN LINDERT
Affiliation:
Department of Pharmacology, Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA 92093, USA
SAMANTHA BANFORD
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
ELIZABETH M. HOEY
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
ALAN TRUDGETT
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK
DAVID J. TIMSON*
Affiliation:
School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK Institute for Global Food Security, Queen's University Belfast, 18-30 Malone Road, Belfast BT9 5BN, UK
*
*Corresponding author. School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. E-mail: [email protected]

Summary

The Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4′-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the Km (470 μm) is higher than the corresponding human enzyme (HsGALE), whereas the kcat (2·3 s−1) is substantially lower. FhGALE binds NAD+ and has  shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alphey, M. S., Burton, A., Urbaniak, M. D., Boons, G. J., Ferguson, M. A. and Hunter, W. N. (2006). Trypanosoma brucei UDP-galactose-4′-epimerase in ternary complex with NAD+ and the substrate analogue UDP-4-deoxy-4-fluoro-alpha-D-galactose. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 62, 829834. doi: 10.1107/S1744309106028740.Google Scholar
Aronov, A. M., Suresh, S., Buckner, F. S., Van Voorhis, W. C., Verlinde, C. L., Opperdoes, F. R., Hol, W. G. and Gelb, M. H. (1999). Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America 96, 42734278.CrossRefGoogle ScholarPubMed
Banford, S., Drysdale, O., Hoey, E. M., Trudgett, A. and Timson, D. J. (2013). FhCaBP3: a Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains. Biochimie 95, 751758. doi: 10.1016/j.biochi.2012.10.027.CrossRefGoogle ScholarPubMed
Bang, Y. L., Nguyen, T. T., Trinh, T. T., Kim, Y. J., Song, J. and Song, Y. H. (2009). Functional analysis of mutations in UDP-galactose-4-epimerase (GALE) associated with galactosemia in Korean patients using mammalian GALE-null cells. The FEBS Journal 276, 19521961. doi: 10.1111/j.1742-4658.2009.06922.x.Google Scholar
Boeke, J. D., LaCroute, F. and Fink, G. R. (1984). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular and General Genetics: MGG 197, 345346.CrossRefGoogle ScholarPubMed
Boray, J. C. (1994). Diseases of Domestic Animals Caused by Flukes. Food and Agricultural Organisation of the United Nations, Rome, Italy.Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254..Google Scholar
Brennan, G. P., Fairweather, I., Trudgett, A., Hoey, E., McCoy, M., McConville, M., Meaney, M., Robinson, M., McFerran, N., Ryan, L., Lanusse, C., Mottier, L., Alvarez, L., Solana, H., Virkel, G. and Brophy, P. M. (2007). Understanding triclabendazole resistance. Experimental and Molecular Pathology 82, 104109. doi: 10.1016/j.yexmp.2007.01.009.Google Scholar
Brockwell, Y. M., Elliott, T. P., Anderson, G. R., Stanton, R., Spithill, T. W. and Sangster, N. C. (2014). Confirmation of Fasciola hepatica resistant to triclabendazole in naturally infected Australian beef and dairy cattle. International Journal for Parasitology: Drugs and Drug Resistance 4, 4854. doi: 10.1016/j.ijpddr.2013.11.005.Google Scholar
Chaudhuri, N. K., Montag, B. J. and Heidelberger, C. (1958). Studies on fluorinated pyrimidines. III. The metabolism of 5-fluorouracil-2-C14 and 5-fluoroorotic-2-C14 acid in vivo . Cancer Research 18, 318328.Google Scholar
Chhay, J. S., Vargas, C. A., McCorvie, T. J., Fridovich-Keil, J. L. and Timson, D. J. (2008). Analysis of UDP-galactose 4′-epimerase mutations associated with the intermediate form of type III galactosemia. Journal of Inherited Metabolic Disease 31, 108116. doi: 10.1007/s10545-007-0790-9.Google Scholar
Cooper, A., Nutley, M. A. and Wadood, A. (2001). Differential scanning microcalorimetry. In Protein–Ligand Interactions: A Practical Approach (ed. Harding, S. E. and Chowdhury, B.), pp. 287318. Oxford University Press, Oxford, UK.Google Scholar
Daenzer, J. M., Sanders, R. D., Hang, D. and Fridovich-Keil, J. L. (2012). UDP-galactose 4′-epimerase activities toward UDP-Gal and UDP-GalNAc play different roles in the development of Drosophila melanogaster . PLoS Genetics 8, e1002721. doi: 10.1371/journal.pgen.1002721.Google Scholar
Duffus, W. P. and Franks, D. (1981). The interaction in vitro between bovine immunoglobulin and juvenile Fasciola hepatica . Parasitology 82, 110.CrossRefGoogle ScholarPubMed
Durrant, J. D., Urbaniak, M. D., Ferguson, M. A. and McCammon, J. A. (2010). Computer-aided identification of Trypanosoma brucei uridine diphosphate galactose 4′-epimerase inhibitors: toward the development of novel therapies for African sleeping sickness. Journal of Medicinal Chemistry 53, 50255032. doi: 10.1021/jm100456a.CrossRefGoogle ScholarPubMed
Enriquez-Flores, S., Rodriguez-Romero, A., Hernandez-Alcantara, G., De la Mora-De la Mora, I., Gutierrez-Castrellon, P., Carvajal, K., Lopez-Velazquez, G. and Reyes-Vivas, H. (2008). Species-specific inhibition of Giardia lamblia triosephosphate isomerase by localized perturbation of the homodimer. Molecular and Biochemical Parasitology 157, 179186. doi: 10.1016/j.molbiopara.2007.10.013.CrossRefGoogle ScholarPubMed
Fridovich-Keil, J., Bean, L., He, M. and Schroer, R. (1993). Epimerase deficiency galactosemia. In GeneReviews (ed. Pagon, R. A., Bird, T. D., Dolan, C. R. and Stephens, K.). University of Washington, Seattle, WA, USA.Google Scholar
Fridovich-Keil, J. L. and Walter, J. H. (2008). Galactosemia. In The Online Metabolic and Molecular Bases of Inherited Diseases (ed. Valle, D., Beaudet, A. L., Vogelstein, B., Kinzler, K. W., Antonarakis, S. E. and Ballabio, A.). McGraw-Hill, New York, NY, USA.Google Scholar
Friedman, A. J., Durrant, J. D., Pierce, L. C., McCorvie, T. J., Timson, D. J. and McCammon, J. A. (2012). The molecular dynamics of Trypanosoma brucei UDP-galactose 4′-epimerase: a drug target for African sleeping sickness. Chemical Biology and Drug Design 80, 173181. doi: 10.1111/j.1747-0285.2012.01392.x.Google Scholar
Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P. and Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry 47, 17391749. doi: 10.1021/jm0306430.Google Scholar
Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C. and Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry 49, 61776196. doi: 10.1021/jm051256o.Google Scholar
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook (ed. Walker, J. M.), pp. 571607. Humana Press, New York, NY, USA.Google Scholar
Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T. and Banks, J. L. (2004). Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry 47, 17501759. doi: 10.1021/jm030644s.CrossRefGoogle ScholarPubMed
Hanna, R. E. (1976). Fasciola hepatica: a light and electron microscope autoradiographic study of incorporation of monosaccharides into glycogen and glycoprotein. Experimental Parasitology 39, 204213.Google Scholar
Hanna, R. E. (1980). Fasciola hepatica: glycocalyx replacement in the juvenile as a possible mechanism for protection against host immunity. Experimental Parasitology 50, 103114. doi: 0014-4894(80)90012-0.CrossRefGoogle ScholarPubMed
Heath, T. D., Lopez, N. G., Stern, W. H. and Papahadjopoulos, D. (1985). 5-Fluoroorotate: a new liposome-dependent cytotoxic agent. FEBS Letters 187, 7375.Google Scholar
Heidelberger, C., Griesbach, L., Montag, B. J., Mooren, D., Cruz, O., Schnitzer, R. J. and Grunberg, E. (1958). Studies on fluorinated pyrimidines. II. Effects on transplanted tumors. Cancer Research 18, 305317.Google ScholarPubMed
Holton, J. B., Gillett, M. G., MacFaul, R. and Young, R. (1981). Galactosaemia: a new severe variant due to uridine diphosphate galactose-4-epimerase deficiency. Archives of Disease in Childhood 56, 885887.Google Scholar
Jumbo-Lucioni, P. P., Hopson, M. L., Hang, D., Liang, Y., Jones, D. P. and Fridovich-Keil, J. L. (2013). Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Disease Models and Mechanisms 6, 8494. doi: 10.1242/dmm.010207.Google Scholar
Kelley, L. A. and Sternberg, M. J. (2009). Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols 4, 363371. doi: 10.1038/nprot.2009.2.Google Scholar
Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D. and Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77(Suppl. 9), 114122. doi: 10.1002/prot.22570.CrossRefGoogle ScholarPubMed
Kumar, S., Nei, M., Dudley, J. and Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299306. doi: 10.1093/bib/bbn017.CrossRefGoogle Scholar
Lai, K., Elsas, L. J. and Wierenga, K. J. (2009). Galactose toxicity in animals. IUBMB Life 61, 10631074. doi: 10.1002/iub.262.Google Scholar
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England) 23, 29472948. doi: 10.1093/bioinformatics/btm404.Google Scholar
Leloir, L. F. (1951). The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Archives of Biochemistry and Biophysics Arch Biochem Biophys 33, 186190.Google Scholar
Lindert, S., Zhu, W., Liu, Y. L., Pang, R., Oldfield, E. and McCammon, J. A. (2013). Farnesyl diphosphate synthase inhibitors from in silico screening. Chemical Biology and Drug Design 81, 742748. doi: 10.1111/cbdd.12121.Google Scholar
Liu, P., Shi, Y., Yang, Y., Cao, Y., Shi, Y., Li, H., Liu, J., Lin, J. and Jin, Y. (2012). Schistosoma japonicum UDP-glucose 4-epimerase protein is located on the tegument and induces moderate protection against challenge infection. PloS ONE 7, e42050. doi: 10.1371/journal.pone.0042050.Google Scholar
MacRae, J. I., Obado, S. O., Turnock, D. C., Roper, J. R., Kierans, M., Kelly, J. M. and Ferguson, M. A. (2006). The suppression of galactose metabolism in Trypanosoma cruzi epimastigotes causes changes in cell surface molecular architecture and cell morphology. Molecular and Biochemical Parasitology 147, 126136. doi: 10.1016/j.molbiopara.2006.02.011.Google Scholar
Maitra, U. S. and Ankel, H. (1971). Uridine diphosphate-4-keto-glucose, an intermediate in the uridine diphosphate-galactose-4-epimerase reaction. Proceedings of the National Academy of Sciences of the United States of America 68, 26602663.Google Scholar
Marquardt, D. (1963). An algorithm for least squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics 11, 431441.Google Scholar
Mayes, J. S., Miller, L. R. and Myers, F. K. (1970). The relationship of galactose-1-phosphate accumulation and uridyl transferase activity to the differential galactose toxicity in male and female chicks. Biochemical and Biophysical Research Communications 39, 661665.Google Scholar
McCorvie, T. J. and Timson, D. J. (2014). UDP-galactose 4-epimerase (GALE). In Handbook of Glycosyltransferases and Related Genes (ed. Taniguchi, N., Honke, K., Fukuda, M., Narimatsu, H., Yamaguchi, Y. and Angata, T.), Chapter 133. Springer, New York, NY, USA.Google Scholar
McCorvie, T. J., Wasilenko, J., Liu, Y., Fridovich-Keil, J. L. and Timson, D. J. (2011). In vivo and in vitro function of human UDP-galactose 4′-epimerase variants. Biochimie 93, 17471754. doi: 10.1016/j.biochi.2011.06.009.Google Scholar
McCorvie, T. J., Liu, Y., Frazer, A., Gleason, T. J., Fridovich-Keil, J. L. and Timson, D. J. (2012). Altered cofactor binding affects stability and activity of human UDP-galactose 4′-epimerase: implications for type III galactosemia. Biochimica et Biophysica Acta 1822, 15161526. doi: 10.1016/j.bbadis.2012.05.007.Google Scholar
McCorvie, T. J., Gleason, T. J., Fridovich-Keil, J. L. and Timson, D. J. (2013). Misfolding of galactose 1-phosphate uridylyltransferase can result in type I galactosemia. Biochimica et Biophysica Acta 1832, 12791293. doi: 10.1016/j.bbadis.2013.04.004.CrossRefGoogle ScholarPubMed
Michaelis, L. and Menten, M. L. (1913). Kinetics of invertase action. Biochemische Zeitschrift 49, 333369.Google Scholar
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009). AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry 30, 27852791. doi: 10.1002/jcc.21256.Google Scholar
Muregi, F. W., Kano, S., Kino, H. and Ishih, A. (2009). Plasmodium berghei: efficacy of 5-fluoroorotate in combination with commonly used antimalarial drugs in a mouse model. Experimental Parasitology 121, 376380. doi: 10.1016/j.exppara.2009.01.009.CrossRefGoogle ScholarPubMed
Ng, W. G., Donnell, G. N., Hodgman, J. E. and Bergren, W. R. (1967). Differences in uridine diphosphate galactose-4-epimerase between haemolysates of newborns and of adults. Nature 214, 283284.Google Scholar
Partis, M. D., Griffiths, D. G., Roberts, G. C. and Beechey, R. D. (1983). Cross-linking of protein by ω-maleimido alkanoyl N-hydroxysuccinimido esters. Journal of Protein Chemistry 2, 263277.Google Scholar
Rathod, P. K., Khatri, A., Hubbert, T. and Milhous, W. K. (1989). Selective activity of 5-fluoroorotic acid against Plasmodium falciparum in vitro . Antimicrobial Agents and Chemotherapy 33, 10901094.Google Scholar
Rathod, P. K., Leffers, N. P. and Young, R. D. (1992). Molecular targets of 5-fluoroorotate in the human malaria parasite, Plasmodium falciparum . Antimicrobial Agents and Chemotherapy 36, 704711.Google Scholar
Riviere, K., Kieler-Ferguson, H. M., Jerger, K. and Szoka, F. C. Jr. (2011). Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. Journal of Controlled Release: Official Journal of the Controlled Release Society 153, 288296. doi: 10.1016/j.jconrel.2011.05.005.Google Scholar
Robinson, M. W. and Dalton, J. P. (2009). Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 27632776. doi: 10.1098/rstb.2009.0089.Google Scholar
Rodriguez-Romero, A., Hernandez-Santoyo, A., del Pozo Yauner, L., Kornhauser, A. and Fernandez-Velasco, D. A. (2002). Structure and inactivation of triosephosphate isomerase from Entamoeba histolytica . Journal of Molecular Biology 322, 669675.Google Scholar
Roper, J. R., Guther, M. L., Milne, K. G. and Ferguson, M. A. (2002). Galactose metabolism is essential for the African sleeping sickness parasite Trypanosoma brucei . Proceedings of the National Academy of Sciences of the United States of America 99, 58845889. doi: 10.1073/pnas.092669999.Google Scholar
Ryan, L. A., Hoey, E., Trudgett, A., Fairweather, I., Fuchs, M., Robinson, M. W., Chambers, E., Timson, D. J., Ryan, E., Feltwell, T., Ivens, A., Bentley, G. and Johnston, D. (2008). Fasciola hepatica expresses multiple α- and β-tubulin isotypes. Molecular and Biochemical Parasitology 159, 7378. doi: 10.1016/j.molbiopara.2008.02.001.Google Scholar
Sanders, R. D., Sefton, J. M., Moberg, K. H. and Fridovich-Keil, J. L. (2010). UDP-galactose 4′ epimerase (GALE) is essential for development of Drosophila melanogaster . Disease Models and Mechanisms 3, 628638. doi: 10.1242/dmm.005058.Google Scholar
Scott, A. and Timson, D. J. (2007). Characterisation of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p. FEMS Yeast Research 7, 366371.Google Scholar
Shaw, M. P., Bond, C. S., Roper, J. R., Gourley, D. G., Ferguson, M. A. and Hunter, W. N. (2003). High-resolution crystal structure of Trypanosoma brucei UDP-galactose 4′-epimerase: a potential target for structure-based development of novel trypanocides. Molecular and Biochemical Parasitology 126, 173180.Google Scholar
Soares, F. A., Sesti-Costa, R., da Silva, J. S., de Souza, M. C., Ferreira, V. F., Santos Fda, C., Monteiro, P. A., Leitao, A. and Montanari, C. A. (2013). Molecular design, synthesis and biological evaluation of 1,4-dihydro-4-oxoquinoline ribonucleosides as TcGAPDH inhibitors with trypanocidal activity. Bioorganic and Medicinal Chemistry Letters 23, 45974601. doi: 10.1016/j.bmcl.2013.06.029.Google Scholar
Srinivasan, V. and Morowitz, H. J. (2006). Ancient genes in contemporary persistent microbial pathogens. The Biological Bulletin 210, 19.Google Scholar
Student. (1908). The probable error of a mean. Biometrika 6, 125.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739. doi: 10.1093/molbev/msr121.Google Scholar
Thoden, J. B., Wohlers, T. M., Fridovich-Keil, J. L. and Holden, H. M. (2000). Crystallographic evidence for Tyr 157 functioning as the active site base in human UDP-galactose 4-epimerase. Biochemistry (American Chemical Society) 39, 56915701. doi: bi000215l.Google Scholar
Timson, D. J. (2005). Functional analysis of disease-causing mutations in human UDP-galactose 4-epimerase. FEBS Journal 272, 61706177. doi: 10.1111/j.1742-4658.2005.05017.x.Google Scholar
Timson, D. J. (2006). The structural and molecular biology of type III galactosemia. IUBMB Life 58, 8389. doi: 10.1080/15216540600644846.Google Scholar
Trott, O. and Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31, 455461. doi: 10.1002/jcc.21334.CrossRefGoogle ScholarPubMed
Tsakiris, S., Michelakakis, H. and Schulpis, K. H. (2005). Erythrocyte membrane acetylcholinesterase, Na+, K+-ATPase and Mg2+-ATPase activities in patients with classical galactosaemia. Acta Paediatrica (Oslo, Norway: 1992) 94, 12231226.CrossRefGoogle ScholarPubMed
Urbaniak, M. D., Tabudravu, J. N., Msaki, A., Matera, K. M., Brenk, R., Jaspars, M. and Ferguson, M. A. (2006 a). Identification of novel inhibitors of UDP-Glc 4′-epimerase, a validated drug target for African sleeping sickness. Bioorganic and Medicinal Chemistry Letters 16, 57445747. doi: 10.1016/j.bmcl.2006.08.091.Google Scholar
Urbaniak, M. D., Turnock, D. C. and Ferguson, M. A. (2006 b). Galactose starvation in a bloodstream form Trypanosoma brucei UDP-glucose 4′-epimerase conditional null mutant. Eukaryotic Cell 5, 19061913. doi: 10.1128/EC.00156-06.CrossRefGoogle Scholar
Vukman, K. V., Adams, P. N., Metz, M., Maurer, M. and O'Neill, S. M. (2013). Fasciola hepatica tegumental coat impairs mast cells’ ability to drive Th1 immune responses. Journal of Immunology (Baltimore, Md.: 1950) 190, 28732879. doi: 10.4049/jimmunol.1203011.Google Scholar
Walter, J. H., Roberts, R. E., Besley, G. T., Wraith, J. E., Cleary, M. A., Holton, J. B. and MacFaul, R. (1999). Generalised uridine diphosphate galactose-4-epimerase deficiency. Archives of Disease in Childhood 80, 374376.Google Scholar
Wilson, R. A., Wright, J. M., de Castro-Borges, W., Parker-Manuel, S. J., Dowle, A. A., Ashton, P. D., Young, N. D., Gasser, R. B. and Spithill, T. W. (2011). Exploring the Fasciola hepatica tegument proteome. International Journal for Parasitology 41, 13471359. doi: 10.1016/j.ijpara.2011.08.003.Google Scholar
Wohlers, T. M. and Fridovich-Keil, J. L. (2000). Studies of the V94M-substituted human UDPgalactose-4-epimerase enzyme associated with generalized epimerase-deficiency galactosaemia. Journal of Inherited Metabolic Disease 23, 713729.Google Scholar
Young, N. D., Hall, R. S., Jex, A. R., Cantacessi, C. and Gasser, R. B. (2010). Elucidating the transcriptome of Fasciola hepatica – a key to fundamental and biotechnological discoveries for a neglected parasite. Biotechnology Advances 28, 222231. doi: 10.1016/j.biotechadv.2009.12.003.Google Scholar
Zinsser, V. L., Farnell, E., Dunne, D. W. and Timson, D. J. (2013 a). Triose phosphate isomerase from the blood fluke Schistosoma mansoni: biochemical characterisation of a potential drug and vaccine target. FEBS Letters 587, 34223427. doi: 10.1016/j.febslet.2013.09.022.Google Scholar
Zinsser, V. L., Hoey, E. M., Trudgett, A. and Timson, D. J. (2013 b). Biochemical characterisation of triose phosphate isomerase from the liver fluke Fasciola hepatica . Biochimie 95, 21822189.Google Scholar
Zinsser, V. L., Hoey, E. M., Trudgett, A. and Timson, D. J. (2014). Biochemical characterisation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from the liver fluke, Fasciola hepatica . Biochimica et Biophysica Acta 1844, 744749. doi: 10.1016/j.bbapap.2014.02.008.Google Scholar
Supplementary material: File

Zinsser Supplementary Material

Table 1

Download Zinsser Supplementary Material(File)
File 16.8 KB
Supplementary material: File

Zinsser Supplementary Material

Supplementary Material

Download Zinsser Supplementary Material(File)
File 901.2 KB
Supplementary material: File

Zinsser Supplementary Material

Figure S1

Download Zinsser Supplementary Material(File)
File 66.1 KB
Supplementary material: File

Zinsser Supplementary Material

Supplementary Material

Download Zinsser Supplementary Material(File)
File 13.6 KB
Supplementary material: File

Zinsser Supplementary Material

Supplementary Material

Download Zinsser Supplementary Material(File)
File 884.6 KB
Supplementary material: File

Zinsser Supplementary Material

Figure S2

Download Zinsser Supplementary Material(File)
File 370.7 KB
Supplementary material: File

Zinsser Supplementary Material

Figure S3

Download Zinsser Supplementary Material(File)
File 98.4 KB