Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:00:39.234Z Has data issue: false hasContentIssue false

A trypsin and chymotrypsin inhibitor from the metacestodes of Taenia pisiformis

Published online by Cambridge University Press:  06 April 2009

I. Németh
Affiliation:
Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, P.O.B. 18, 1581-Hungary
S. Juhász
Affiliation:
Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, P.O.B. 18, 1581-Hungary

Summary

The metacestodes of Taenia pisiformis have been shown to contain a protease inhibitor capable of inactivating the esterolysis of N-α-benzoyl-L-arginine ethyl ester (BAEE) and N-benzoyl-L-tyrosine ethyl ester (BTEE) by trypsin and chymotrypsin, respectively, of bovine, dog and rabbit origin, but not affecting the hydrolytic activity of subtilisin, elastase, collagenase, pepsin, rennin and papain. This inhibitor has been demonstrated in whole worm extracts and in the incubation medium of in vitro-maintained, intact living metacestodes. The protease inhibitor which was purified by trichloroacetic acid precipitation, Sephadex G–100 chromatography and affinity chromatography on CNBr-activated Sepharose 4B–bovine chymotrypsin conjugate was soluble in 5% trichloroacetic acid, withstood heat up to 80°C, tolerated the pH range 1·5 to 9·0, was unaffected by 8 M urea or 0·2 m 2-mercaptoethanol and had a molecular weight of about 7000 to 7200, as calculated from its gel chromatographic behaviour. Complex formation between the inhibitor and the enzymes required 3–4 min for completion. The enzyme–inhibitor complex was not dissociated by 4 m KC1. Activity determinations on bovine TPCK–trypsin and bovine chymotrypsin with BAEE and BTEE assays revealed that the inhibitory actions toward both enzymes are functions of the same or closely adjacent sites of the inhibitor molecule. The supposed function of the inhibitor is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. (1970). Estimation of molecular size and molecular weights of biological compounds by gel filtration. Methods in Biochemical Analysis 18, 153.CrossRefGoogle ScholarPubMed
Ansari, A. A., Khan, M. A. & Ghatak, S. (1976). Ascaridia galli: trypsin and chymotrypsin inhibitors. Experimental Parasitology 39, 7483.CrossRefGoogle Scholar
Arnon, R. (1970). Papain. In Methods in Enzymology, vol. 19, (ed. Perlmann, G. E. and Lorand, L.), pp. 226–44. New York and London: Academic Press.Google Scholar
Brand von, T. (1973). Biochemistry of Parasites. New York and London: Academic Press.Google Scholar
Dayhoff, M. O. & Eck, R. V. (1968). Atlas of Protein Sequence and Structure. Silver Spring: National Biomedical Research Foundation.Google Scholar
Feinstein, G. (1971). Isolation of chicken ovoihibitor by affinity chromatography on chymotrypsin-Sepharose. Biochimica et biophysica acta 236, 73–7.Google ScholarPubMed
Fetterolf, D. W. (1907). The existence of an anti-enzyme in tapeworm. University of Pennyslvania Medical Bulletin 20, 94–6.Google Scholar
Fossum, K. (1970). Proteolytic enzymes and biological inhibitors. I. Comparison between the Kunitz method and the agar gel casein precipitating reaction for determination of the activity of some commercial proteolytic enzymes and inhibitors. Acta Pathologica et Microbiologica Scandinavica, B 78, 350–62.Google ScholarPubMed
Fossum, K. (1971). Proteolytic Enzymes and Biological Inhibitors. Oslo: Universitetsforlaget.Google ScholarPubMed
Hummel, B. C. W. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Canadian Journal of Biochemistry and Physiology 37, 1393–9.CrossRefGoogle ScholarPubMed
Kassell, B. (1970). Naturally occurring inhibitors of proteolytic enzymes. In Methods in Enzymology, vol. 19, (ed. Perlmann, G. E. and Lorand, L.), pp. 839906. New York and London: Academic Press.Google Scholar
Keninya, V. A. (1971). Isolation and purification of trypsin and chymotrypsin. inhibitors from Ascaridia galli. Trudŷ Vigis 18, 121–8. (In Russian.)Google Scholar
Kucich, U. & Peanasky, R. J. (1970). Trypsin inhibitors from Ascaris lumbricoides var. suis. Biochimica et biophysica acta 200, 4757.CrossRefGoogle ScholarPubMed
Laurent, T. C. & Killander, J. (1964). A theory of gel filtration and its experimental verification. Journal of Chromatography 14, 317–30.CrossRefGoogle Scholar
Matskási, I. & Junász, S. (1977). Ligula intestinalis (L., 1785): investigation of plerocercoids and adults for protease and protease inhibitor activities. Parasitologia Hungarica 10, 5160.Google Scholar
Matskási, I. & Németh, I. (1979). Ligula intestinalis (Cestoda: Pseudophyllidea): studies on the properties of proteolytic and protease inhibitor activities of plerocercoid larvae. International Journal for Parasitology 9, 221–7.CrossRefGoogle Scholar
Németh, I., Juhász, S. & Baintner, K. (1979). A trypsin and chymotrypsin inhibitor from Taenia pisiformis. International Journal for Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Pappas, P. W. (1978). Tryptic and protease activities in the normal and Hymenolepis diminuta-infected rat small intestine. Journal of Parasitology 64, 562–4.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Read, C. P. (1972 a). Trypsin inactivation by intact Hymenolepis diminuta. Journal of Parasitology 58, 864–71.CrossRefGoogle Scholar
Pappas, P. W. & Read, C. P. (1972 b). Inactivation of α- and β-chymotrypsin by intact Hymenolepis diminuta (Cestoda). Biological Bulletin, Marine Biological Laboratory, Woods Hole, Mass. 143, 605–16.CrossRefGoogle Scholar
Peanasky, R. J. & Laskowski, M. Sr. (1960). Chymotrypsin inhibitor from Ascaris. Biochimica et biophysica acta 37, 167–9.CrossRefGoogle ScholarPubMed
Peansasky, R. J. & Szucs, M. M. (1964). Further purification of a chymotrypsin inhibitor from Ascaris lumbricoides and its reactions with chymotrypsin α and β. Journal of Biological Chemistry 239, 2525–9.CrossRefGoogle Scholar
Pudles, J., Rola, F. H. & Matida, A. K. (1967). Studies on the proteolytic inhibitors from Ascaris lumbricoides var. suum. II. Purification, properties and chemical modification of the trypsin inhibitor. Archives of Biochemistry and Biophysics 120, 594601.CrossRefGoogle Scholar
Rajagopalan, T. G., Moore, S. & Stein, W. H. (1966). Pepsin from pepsinogen. Journal of Biological Chemistry 241, 4940–50.CrossRefGoogle ScholarPubMed
Reichenbach-Klinke, H. H. & Reichenbach-Klinke, K. E. (1970). Enzymuntersuch-ungen an Fischen. II. Trypsin- und α-Amylase-Inhibitoren. Archiv für Fischereiwissenschaft 21, 6772.Google Scholar
Rola, F. H. & Pudles, J. (1966). Studies on the chymotryptic inhibitors from Ascaris lumbricoides var. suum. Purification and properties. Archives of Biochemistry and Biophysics 113, 134–42.CrossRefGoogle Scholar
Schwert, G. W. & Takenaka, Y. (1955). A spectrophotometric determination of trypsin and chymotrypsin. Biochimica et biophysica acta 16, 570–5.CrossRefGoogle ScholarPubMed
Soxhlet, F. (1877). Die Darstellung haltbarer Labflüssigkeiten. Milch-Zeitung 37, 495501.Google Scholar
Tristram, G. R. & Smith, R. H. (1963). The amino acid composition of some purified proteins. Advances in Protein Chemistry 18, 227318.CrossRefGoogle ScholarPubMed
Vogel, R., Trautschold, I. & Werle, E. (1966). Natürliche Proteinasen-Inhibitoren. Stuttgart: Georg Thieme Verlag.Google Scholar
Walsh, K. A. & Neutrath, H. (1964). Trypsinogen and chymotrypsinogen as homologous proteins. Proceedings of the National Academy of Sciences 52, 884–9.CrossRefGoogle ScholarPubMed
Willadsen, P. (1977). A trypsin inhibitor from the parasitic nematode, Oesophagostomum radiatum. Australian Journal of Biological Sciences 30, 411–19.CrossRefGoogle Scholar