Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:41:32.040Z Has data issue: false hasContentIssue false

Trypanosoma evansi in naturally infected Dromedary Camels: lipid profile, oxidative stress parameters, acute phase proteins and proinflammatory cytokines

Published online by Cambridge University Press:  18 February 2016

S. M. EL-BAHR*
Affiliation:
Department of Physiology, Biochemistry and Pharmacology (Biochemistry), College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt
W. M. EL-DEEB
Affiliation:
Department of Clinical studies, College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia Department of Veterinary Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
*
* Corresponding author:Department of Physiology, Biochemistry and Pharmacology (Biochemistry), College of Veterinary Medicine and Animal Resources, King Faisal University, Al-Ahsa, Saudi Arabia. E-mail: [email protected]

Summary

Additional biomarkers are essential for control of Trypanosoma evansi (T. evansi) infection in dromedary camels. Two groups of 30 camels each, one naturally infected with T. evansi and other normal healthy were executed. The basis for the infection was the positive findings of clinical examination, blood smears and latex agglutination test. Blood samples of both groups and its harvested serum were used for the estimation of present serobiochemical parameters. The present findings revealed significant decrease (P ⩽ 0·05) in triacylglycerol, cholesterol, high density lipoprotein cholesterol with significant increase (P ⩽ 0·05) in low density lipoprotein cholesterol, beta hydroxyl butyric acids, non-esterified fatty acids, haptoglobin, serum amyloid A, ceruloplasmin, fibrinogen, interleukins, tumour necrosis factor-α, interferon gamma, malondialdehyde, superoxide dismutase, reduced glutathione and catalase of infected camels compared with the control. The present study suggests lipid profile, acute phase proteins, proinflammatory cytokines and oxidative stress parameters as biomarkers for T. evansi infection in camels.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamu, S., Ige, A. A., Jatau, I. D., Neils, J. S., Useh, N. M., Bisalla, M., Ibrahim, D. G., Nok, A. J. and Esievo, A. N. (2008). Changes in the serum profiles of lipids and cholesterol in sheep experimental model of acute African trypanosomosis. African Journal of Biotechnology 7, 20902098.Google Scholar
Adamu, S., Barde, N., Abenga, J. N., Useh, N. M., Ibrahim, D. G. and Esievo, A. N. (2009). Experimental Trypanosoma brucei infection-induced changes in the serum profiles of lipids and cholesterol and the clinical implications in pigs. Journal of Cell and Animal Biology 3, 1520.Google Scholar
Biryomumaisho, S., Katunguka-Rwakishaya, E. and Rubaire-Akiiki, C. M. (2003). Serum biochemical changes in experimental Trypanosoma congolense and Trypanosoma brucei infection in East Africa sheep. Veterinary Archive 73, 167180.Google Scholar
Black, S. and Vanderweed, V. (1989). Serum lipoproteins are required for multiplication of Trypanosoma brucei brucei under axenic culture conditions. Molecular and Biochemical Parasitology 37, 6572.CrossRefGoogle ScholarPubMed
Cabana, V. G., Siegel, J. N. and Sabesin, S. M. (1989). Effect of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. Journal of Lipid Research 30, 3949.CrossRefGoogle ScholarPubMed
Chaudhary, Z. I. and Iqbal, J. (2000). Incidence, biochemical and haematological alterations induced by natural trypanosomosis in racing dromedary camels. Acta Tropica 77, 209213.CrossRefGoogle ScholarPubMed
Chaudhuri, M., Ott, R. D. and Hill, G. C. (2006). Trypanosome alternative oxidase: from molecule to function. Trends in Parasitology 22, 484491.CrossRefGoogle ScholarPubMed
Eckersall, P. D. and Bell, R. (2010). Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine. The Veterinary Journal 185, 2327.CrossRefGoogle ScholarPubMed
Eckersall, P. D., Gow, J. W., McComb, C., Bradley, B., Rodgers, J., Murray, M. and Kennedy, P. G. (2001). Cytokines and the acute phase response in post-treatment reactive encephalopathy of Trypanosoma brucei brucei infected mice. Parasitolgy International 50, 1516.CrossRefGoogle ScholarPubMed
El-Deeb, W. M. and Elmoslemany, A. M. (2015). Cardiac and oxidative stress biomarkers in Trypanosoma evansi infected camels: diagnostic and prognostic prominence. Parasitology 142, 767772.CrossRefGoogle ScholarPubMed
Enwezor, N. C. and Sackey, K. B. (2005). Camel trypanosomosis-a review. Veterinarski Arhiv 75, 439452.Google Scholar
Graham, S. P., Brown, D. J., Vatansever, Z., Waddington, D., Taylor, L. H., Nichani, A. K, Campbell, D. M., Adamson, R. E., Glass, E. J. and Spooner, R. L. (2001). Pro-inflammatory cytokine expression by Theileria annulata infected cell lines correlates with the pathology they cause in vivo . Vaccine 19, 29322944.CrossRefGoogle Scholar
Gutierrez, C., Corbera, J. A., Juste, M. C., Doreste, F. and Morales, I. (2005). An outbreak of abortions and high neonatal mortality associated with Trypanosoma evansi infection in dromedary camels in the Canary Islands. Veterinary Parasitology 130, 163168.CrossRefGoogle ScholarPubMed
Joshi, P. P., Shegoka, V. R., Powar, R. M., Herder, S., Katti, R., Salkar, H. R., Dani, V. S., Bhargava, A., Jannin, J. and Truc, P. (2005). Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. The American Journal of Tropical Medicine and Hygiene 73, 491495.CrossRefGoogle ScholarPubMed
Logan-Henfrey, L. L., Gardiner, P. R. and Mahmoud, M. M. (1992). Animal trypanosomiasis in Sub-Saharan Africa. In Parasitic Protozoa (ed. Kreier, J. P. and Baker, J. R.), pp. 157275. Academic Press, San Diego, CA, USA.Google Scholar
Nok, A. J., Nock, A. H. and Bonire, J. J. (2003). The CHOL pathway of Trypanosoma congolense could be a target for triphenylsiliconsalicylate inhibition. Applied Organometallic Chemistry 17, 1722.CrossRefGoogle Scholar
Olaho-Mukani, W., Nyanga, J. N. and Ouma, J. O. (1996). Use of suratex for field diagnosis of patent and non-patent Trypanosoma evansi infections in camels. British Veterinary Journal 152, 109111.CrossRefGoogle ScholarPubMed
Paim, F. C., Duarte, M. M., Costa, M. M., Da Silva, A. S., Wolkmer, P., Silva, C. B., Paim, C. B., França, R. T., Mazzanti, C. M., Monteiro, S. G. and Krause, A. L. (2011). Cytokines in rats experimentally infected with Trypanosoma evansi . Experimental Parasitology 128, 365370.CrossRefGoogle ScholarPubMed
Radostits, O. M., Gay, C. C., Hinchcliff, K. W. and Constable, P. D. (2007). Veterinary Medicine: a Textbook of the Disease of Cattle, Sheep, Pigs, Goats and Horses, 10th Edn. Saunders, Philadelphia, USA.Google Scholar
Saleh, M. A., Al-Salahy, M. B. and Sanousi, S. A. (2009). Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi . Veterinary Parasitology 162, 192199.CrossRefGoogle ScholarPubMed
SAS (2002). Statistical Analysis System. User's Guide. SAS Institute Inc., Cary, USA.Google Scholar
Segal, A. W. (2005). How neutrophils kill microbes. Annual Review of Immunology 23, 197223.CrossRefGoogle ScholarPubMed
Soethout, E., Muller, K. E. and Rutten, V. P. (2002). Neutrophil migration in the lung: general and bovine-specific aspects. Veterinary Immunology and Immunopathology 87, 277285.CrossRefGoogle ScholarPubMed
Wellde, B. T., Rearson, M. J., Kovatch, R. M., Chumo, W. T. and Wykoff, D. E. (1989). Experimental infection of cattle with Trypanosoma brucei rhodesiense . Annals of Tropical Medicine and Parasitology 83, 133134.CrossRefGoogle ScholarPubMed
Woo, P. K. (1969). The haematocrit centrifuge technique for the detection of trypanosomes in blood. Canadian Journal of Zoology 47, 921923.CrossRefGoogle ScholarPubMed
World Organization for Animal Health (2008). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. OIE, Paris, France.Google Scholar