Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:32:00.386Z Has data issue: false hasContentIssue false

Trypanosoma cruzi exoantigen is a member of a 160 kDa gene family

Published online by Cambridge University Press:  06 April 2009

E. E. Jazin
Affiliation:
Department of Medical Genetics, Biomedical Center, Box 589, S-751 23, Uppsala, Sweden
E. J. Bontempi
Affiliation:
INDIECH, Av. Paseo Colón 568, (1063), Buenos Aires, Argentina
D. O. Sanchez
Affiliation:
Instituto de Investigations Bioquímicas, Fundación Campomar, Av. Patricias Argentinas 435, (1405), Buenos Aires, Argentina
L. Åslund
Affiliation:
Department of Medical Genetics, Biomedical Center, Box 589, S-751 23, Uppsala, Sweden
J. Henriksson
Affiliation:
Department of Medical Genetics, Biomedical Center, Box 589, S-751 23, Uppsala, Sweden
A. C. C. Frasch
Affiliation:
Instituto de Investigations Bioquímicas, Fundación Campomar, Av. Patricias Argentinas 435, (1405), Buenos Aires, Argentina
U. Pettersson
Affiliation:
Department of Medical Genetics, Biomedical Center, Box 589, S-751 23, Uppsala, Sweden

Extract

During the chronic stage of Chagas disease a 160 kDa antigen appears in the blood of patients and remains detectable many years after the onset of the disease. This antigen is secreted by the trypomastigote form of the parasite while it is undetectable in the epimastigote form. We report here that the chronic 160 kDa exoantigen is encoded by a gene family (CEA 160 family). We describe the cloning and partial nucleotide sequence of a gene (CEA 160–1) belonging to the CEA160 family. Comparison of the gene sequence with other sequences present in the databases revealed homologies with several Trypanosoma cruzi surface antigens. Highest amino acid identity (59%) was with members of a family containing epitopes that mimic nervous tissues (Van Voorhis et al. 1993). Another related group (18–22% amino acid identity) comprises proteins of 85 or 160 kDa sharing an amino acid motif that is conserved among bacterial neuraminidases (Fouts et al. 1991; Pollevick et al. 1991; Kahn et al. 1991; Takle & Cross, 1991; Franco et al. 1993). The amino acid identities with the different antigens were not homogeneously distributed. Regions of higher identity (40–60%) were grouped in the central region of each protein.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Affranchino, J. L., Ibañez, C. F., Luquetti, A. O., Rassi, A., Reyes, M. B., Macina, R. A., Åslund, L., Pettersson, U. & Frasch, A. C. C. (1989). Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas' disease. Molecular and Biochemical Parasitology 34, 221–8.CrossRefGoogle ScholarPubMed
Campetella, O., Sanchez, D., Cazzulo, J. J. & Frasch, A. C. C. (1992). A superfamily of Trypanosoma cruzi surface antigens. Parasitology Today 8, 378–81.CrossRefGoogle ScholarPubMed
Cazzulo, J. J., Franke De Cazzulo, B. M., Engel, J. C. & Cannata, J. J. B. (1985). End products and enzyme levels of aerobic glucose fermentation in Trypanosomatids. Molecular and Biochemical Parasitology 16, 329–43.CrossRefGoogle ScholarPubMed
Devereux, J., Haeberli, J. & Smithies, O. (1984). A comprehensive set of analysis programs for the vax. Nucleic Acids Research 12, 387–95.CrossRefGoogle ScholarPubMed
Fouts, D. L., Ruef, B. J., Ridley, P. T., Wrightsman, R. A., Peterson, D. S. & Manning, J. E. (1991). NucleOtide sequence and transcription of a trypomastigote surface antigen gene of Trypanosoma cruzi. Molecular and Biochemical Parasitology 46, 189200.CrossRefGoogle ScholarPubMed
Franco, F. R., Paranhos-Bacalla, G. S., Yamauchi, L. M., Yoshida, N. & Da Silveira, J. F. (1993). Characterization of a cDNA clone encoding the carboxy-terminal domain of a 90-kilodalton surface antigen of Trypanosoma cruzi metacyclic trypomastigotes. Infection and Immunity 61, 4196–201.CrossRefGoogle ScholarPubMed
Hultman, T., Ståhl, S., Hornes, E. & Uhlén, M. (1989). Direct solid phase sequencing of genomic DNA using magnetic beads as solid support. Nucleic Acids Research 17, 4936–46.CrossRefGoogle ScholarPubMed
Ibañez, C. F., Affranchino, J. L. & Frasch, A. C. C. (1987). Antigenic determinants of Trypanosoma cruzi denned by cloning of parasite DNA. Molecular and Biochemical Parasitology 25, 175–84.CrossRefGoogle Scholar
Jazin, E. E., Luquetti, A. O., Rassi, A. & Frasch, A. C. C. (1991). Shift of excretory–secretory immunogens of Trypanosoma cruzi during human Chagas' disease. Infection and Immunity 59, 2189–91.CrossRefGoogle ScholarPubMed
Kahn, S., Colbert, T. G., Wallace, J. C., Hoagland, N. A. & Eisen, H. (1991). The major 85-kDa surface antigen of the mammalian-stage forms of Trypanosoma cruzi is a family of sialidases. Proceedings of the National Academy of Sciences, USA 88, 4481–5.CrossRefGoogle ScholarPubMed
Kamper, S. M. & Barbet, A. F. (1992). Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei. Molecular and Biochemical Parasitology 53, 3344.CrossRefGoogle ScholarPubMed
Kirchhoff, L. V. (1990). Trypanosoma species (American trypanosomiasis, Chagas disease): biology of trypanosomes. In Principles and Practice of Infectious Diseases (ed. Mandell, G. L., JrDouglas, R. G. & Bennett, J. E.), pp. 20772084. New York: Churchill Livingstone.Google Scholar
Kozak, M. (1989). The scanning model for translation: An update. Journal of Cell Biology 108, 229–41.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Taibi, J., Cornette, J., Velge, P., Marty, B., Loyens, M., Esteva, M., Rizvi, F. S. & Capron, A. (1990). Characterization of major surface and excretory–secretory immunogens of Trypanosoma cruzi trypomastigotes and identification of potential protective antigen. Parasitology 100, 115–24.CrossRefGoogle ScholarPubMed
Ozaki, L. S., Mattei, D., Jendoubi, M., Druihle, P., Blisnick, T., Guillote, M., Puijalon, O. & Pereira Da Silva, L. (1986). Plaque antibody selection: rapid immunological analysis of a large number of recombinant phase clones positive to sera against Plasmodium falciparum antigens. Journal of Immunological Methods 89, 213–19.CrossRefGoogle Scholar
Parodi, A. J., Pollevick, G. D., Mautner, M., Buschiazzo, A., Sanchez, D. O. & Frasch, A. C. C. (1992). Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi. The EMBO Journal 11, 1705–10.CrossRefGoogle ScholarPubMed
Pereira, M. E., Mejia, J. S., Ortega-Barria, E., Matzilevich, D. & Prioli, R. P. (1991). The Trypanosoma cruzi neuraminidase contains sequences similar to bacterial neuraminidases, YWTD repeats of the low density lipoprotein receptor, and type III modules of fibronectin. journal of Experimental Medicine 174, 179–91.CrossRefGoogle ScholarPubMed
Pollevick, G. D., Affranchino, J. L., Frasch, A. C. C. & Sanchez, D. O. (1991). The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. Molecular and Biochemical Parasitology 47, 247–50.CrossRefGoogle ScholarPubMed
Ruef, B. J., Dawson, B. D., Tewari, D., Fouts, D. L. & Manning, J. E. (1994). Expression and evolution of members of the Trypanosoma cruzi trypomastigote surface antigen multigene family. Molecular and Biochemical Parasitology 63, 109–20.CrossRefGoogle ScholarPubMed
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer directed amplification of DNA with a thermostable DNA polymerase. Science 239, 487–91.CrossRefGoogle ScholarPubMed
Takle, G. B. & Cross, G. A. M. (1991). An 85-kilodalton surface antigen gene family of Trypanosoma cruzi encodes polypeptides homologous to bacterial neuraminidases. Molecular and Biochemical Parasitology 48, 185–98.CrossRefGoogle ScholarPubMed
Uemura, H., Schenkman, S., Nussenzweig, V. & Eichinger, D. (1992). Only some members of a gene family in Trypanosoma cruzi encode proteins that express both trans-sialidase and neuraminidase activities. The EMBO Journal 11, 3837–44.CrossRefGoogle ScholarPubMed
Van Voorhis, W. C. & Eisen, H. (1989). FL-160. A surface antigen of Trypanosoma cruzi that mimics mammalian nervous tissue. Journal of Experimental Medicine 169, 641–52.CrossRefGoogle ScholarPubMed
Van Voorhis, W. C., Schlekewy, L. & Le Trong, H. (1991). Molecular mimicry by Trypanosoma cruzi: the F1–160 epitope that mimics mammalian nerve can be mapped to a 12-amino acid peptide. Proceedings of the National Academy of Sciences, USA 88, 5993–7.CrossRefGoogle ScholarPubMed
Van Voorhis, W. C., Barrett, L., Koelling, R. & Farr, A. G. (1993). FL-160 proteins of Trypanosoma cruzi are expressed from a multigene family and contains two distinct epitopes that mimic nervous tissues. Journal of Experimental Medicine 178, 681–94.CrossRefGoogle ScholarPubMed
Yamauchi, K. (1991). The sequence flanking translational initiation site in protozoa. Nucleic Acids Research 19, 2715–20.CrossRefGoogle ScholarPubMed