Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:09:46.506Z Has data issue: false hasContentIssue false

Trypanocidal activity of free and nanoencapsulated curcumin on Trypanosoma evansi

Published online by Cambridge University Press:  19 August 2014

L. T. GRESSLER*
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
C. B. OLIVEIRA
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
K. CORADINI
Affiliation:
Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
L. DALLA ROSA
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
T. H. GRANDO
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
M. D. BALDISSERA
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
C. E. ZIMMERMANN
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
A. S. DA SILVA
Affiliation:
Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Brazil
T. C. ALMEIDA
Affiliation:
Department of Clinical and Toxicological Analysis, UFSM, Santa Maria, Brazil
C. L. HERMES
Affiliation:
Department of Clinical and Toxicological Analysis, UFSM, Santa Maria, Brazil
P. WOLKMER
Affiliation:
Universidade de Cruz Alta (UNICRUZ), Cruz Alta, Brazil
C. B. SILVA
Affiliation:
Department of Small Animals, UFSM, Santa Maria, Brazil
K. L. S. MOREIRA
Affiliation:
Department of Morphology, UFSM, Santa Maria, Brazil
R. C. R. BECK
Affiliation:
Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
R. N. MORESCO
Affiliation:
Department of Clinical and Toxicological Analysis, UFSM, Santa Maria, Brazil
M. L. DA VEIGA
Affiliation:
Universidade de Cruz Alta (UNICRUZ), Cruz Alta, Brazil
L. M. STEFANI
Affiliation:
Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó, Brazil
S. G. MONTEIRO
Affiliation:
Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
*
* Corresponding author: Department of Microbiology and Parasitology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil. E-mail: [email protected]

Summary

This study aimed to evaluate in vitro and in vivo trypanocidal activity of free and nanoencapsulated curcumin against Trypanosoma evansi. In vitro efficacy of free curcumin (CURC) and curcumin-loaded in lipid-core nanocapsules (C-LNCs) was evaluated to verify their lethal effect on T. evansi. To perform the in vivo tests, T. evansi-infected animals were treated with CURC (10 and 100 mg kg−1, intraperitoneally [i.p.]) and C-LNCs (10 mg kg−1, i.p.) during 6 days, with the results showing that these treatments significantly attenuated the parasitaemia. Infected untreated rats showed protein peroxidation and an increase of nitrites/nitrates, whereas animals treated with curcumin showed a reduction on these variables. As a result, the activity of antioxidant enzymes (superoxide dismutase and catalase) differs between groups (P<0·05). Infected animals and treated with CURC exhibited a reduction in the levels of alanine aminotransferase and creatinine, when compared with the positive control group. The use of curcumin in vitro resulted in a better parasitaemia control, an antioxidant activity and a protective effect on liver and kidney functions of T. evansi-infected adult male Wistar rats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ak, T. and Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico – Biological Interactions 174, 2737.CrossRefGoogle ScholarPubMed
Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics 4, 807818.CrossRefGoogle Scholar
Baldissera, M. D., Da Silva, A. S., Oliveira, C. B., Zimmermann, C. E. P., Vaucher, R. A., Santos, R. C. V., Rech, V. C., Tonin, A. A., Giongo, J. L., Mattos, C. B., Koester, L., Santurio, J. M. and Monteiro, S. G. (2013). Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: in vitro tests. Experimental Parasitology 134, 356361.CrossRefGoogle ScholarPubMed
Baltz, T., Baltz, D., Giroud, C. and Crockett, J. (1985). Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense . EMBO Journal 4, 12731277.CrossRefGoogle Scholar
Berlin, D., Loeb, E. and Baneth, G. (2009). Disseminated central nervous system disease caused by Trypanosoma evansi in a horse. Veterinary Parasitology 161, 316319.CrossRefGoogle ScholarPubMed
Bernardi, A., Braganhol, E., Jäger, E., Figueiró, F., Edelweiss, M. I., Pohlmann, A. R., Guterres, S. S. and Battastini, A. M. O. (2009). Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Letters 281, 5363.CrossRefGoogle Scholar
Bernardi, A., Frozza, R. L., Meneghetti, A., Hoppe, J. B., Battastini, A. M. O., Pohlmann, A. R., Guterres, S. S. and Salbego, C. G. (2012). Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1–42 in Alzheimer's disease models. International Journal of Nanomedicine 7, 49274942.CrossRefGoogle ScholarPubMed
Brandão, L. P., Larsson, M. H. M. A., Birgel, E. H., Hagiwara, M. K., Ventura, R. M. and Teixeira, M. M. G. (2002). Infecção natural por Trypanosoma evansi em cães – relato de caso. Clínica Veterinária 36, 2326.Google Scholar
Brun, R., Hecker, H. and Lun, Z. R. (1998). Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship (a review). Veterinary Parasitology 79, 95107.CrossRefGoogle Scholar
Colpo, C. B., Monteiro, S. G., Stainki, D. R., Colpo, E. T. B. and Henriques, G. B. (2005). Infecção Natural por Trypanosoma evansi em cão no Rio Grande do Sul. Ciência Rural 35, 717719.CrossRefGoogle Scholar
Connor, R. J. and Van Den Boosche, P. (2004). African animal trypanosomoses. In Infectious Diseases of Livestock, 2nd edn (ed. Coetzer, J. A. W. and Tustin, R. C.), pp. 251296. Oxford University Press, South Africa, v.1., cap. 12.Google Scholar
Da Silva, A. S., Doyle, R. L. and Monteiro, S. G. (2006). Método de contenção e confecção de esfregaço sanguíneo para pesquisa de hemoparasitas em ratos e camundongos. Revista da FZVA 13, 8387.Google Scholar
Da Silva, A. S., Paim, F. C., Santos, R. C. V., Sangoi, M. B., Moresco, R. N., Lopes, S. T. A., Jaques, J. A., Baldissarelli, J., Morsch, V. M. and Monteiro, S. G. (2012). Nitric oxide level, protein oxidation and antioxidant enzymes in rats infected by Trypanosoma evansi . Experimental Parasitology 132, 166170.CrossRefGoogle ScholarPubMed
Desquesnes, M., Bossard, G., Patrel, D., Herder, S., Patout, O., Lepetitcolin, E., Thevenon, S., Berthier, D., Pavlovic, D., Brugidou, R., Jacquiet, P., Schelcher, F., Faye, B., Touratier, L. and Cuny, G. (2008). First outbreak of Trypanosoma evansi in camels in metropolitan France. Veterinary Record 162, 750752.CrossRefGoogle ScholarPubMed
Desquesnes, M., Holzmuller, P., Lai, D., Dargantes, A., Lun, Z. and Jittaplapong, S. (2013). Trypanosoma evansi and Surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Research International 2013, 122.Google Scholar
Dohare, P., Garg, P., Jain, V., Nath, C. and Ray, M. (2008). Dose dependence and therapeutic window for the neuroprotective effects of curcumin in thromboembolic model of rat. Behavioural Brain Research 21, 289297.CrossRefGoogle Scholar
Fontana, M. C., Coradini, K., Guterres, S. S., Pohlmann, A. R. and Beck, R. C. R. (2009). Nanoencapsulation as a way to control the release and to increase the photostability of clobetasol propionate: influence of the nanostructured system. Journal of Biomedical Nanotechnology 5, 254263.CrossRefGoogle ScholarPubMed
Freitas, R. B., Rovani, B. T., Boligon, A. A., Brum, T. F., Piana, M., Jesus, R. S., Veloso, C. F., Kober, H., Moresco, R. N., Araldi, I. C. C., Bauermann, L. F. and Athayde, M. L. (2013). Hepatotoxicity evaluation of aqueous extract from Scutia buxifolia . Molecules 18, 75707583.CrossRefGoogle ScholarPubMed
Frozza, R., Bernardi, A., Paese, K., Hoppe, J. B., Silva, T., Battastini, A. M. O., Pohlmann, A. R., Guterres, S. S. and Salbego, C. (2010). Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. Journal of Biomedical Nanotechnology 6, 694703.CrossRefGoogle ScholarPubMed
Gillingwater, K., Kumar, A., Ismail, M. A., Arafa, R. K., Stephens, C. E., Boykin, D. W., Tidwell, R. R. and Brun, R. (2010). In vitro activity and preliminary toxicity of various diamidine compounds against Trypanosoma evansi . Veterinary Parasitology 169, 264272.CrossRefGoogle ScholarPubMed
Goel, A., Kunnumakkara, A. B. and Aggarwal, B. B. (2008). Curcumin as “curecumin”. From kitchen to clinic. Biochemistry Pharmacology 75, 787809.CrossRefGoogle ScholarPubMed
Gutierrez, C., Juste, M. C., Corbera, J. A., Magnus, E., Verloo, D. and Montoya, J. A. (2000). Camel trypanosomosis in the Canary Islands: assessment of seroprevalence and infection rates using the card agglutination test (CATT/T. evansi) and parasite detection tests. Veterinary Parasitology 90, 155159.CrossRefGoogle ScholarPubMed
Haddad, M., Sauvain, M. and Deharo, E. (2011). Curcuma as a parasiticidal agent: a review. Planta Médica 77, 672678.CrossRefGoogle ScholarPubMed
Hanasand, M., Omdal, R., Norheim, K. B., Gøransson, L. G., Brede, C. and Jonsson, G. (2012). Improved detection of advanced oxidation protein products in plasma. Clinica Chimica Acta 413, 901906.CrossRefGoogle ScholarPubMed
Herrera, H. M., Dávila, A. M., Norek, A., Abreu, U. G., Souza, S. S., D'Andrea, P. S. and Jansen, A. M. (2004). Enzootiology of Trypanosoma evansi in Pantanal, Brazil. Veterinary Parasitology 125, 263275.CrossRefGoogle Scholar
Ireson, C. R., Jones, D. J., Orr, S., Coughtrie, M. W., Boocock, D. J., Williams, M. L., Farmer, P. B., Steward, W. P. and Gescher, A. J. (2002). Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiology, Biomarkers and Prevention 11, 105111.Google ScholarPubMed
Jäger, E., Venturini, C. G., Poletto, F. S., Colomé, L. M., Pohlmann, J. P., Bernardi, A., Battastini, A. M., Guterres, S. S. and Pohlmann, A. R. (2009). Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. Journal of Biomedical Nanotechnology 5, 130140.CrossRefGoogle ScholarPubMed
Joshi, P. P., Shegokar, V. R., Powar, R. M., Herder, S., Katti, R., Salkar, H. R., Dani, V. S., Bhargava, A., Jannin, J. and Truc, P. (2005). Human trypanosomosis caused by Trypanosoma evansi in India: the first case report. The American Journal of tropical medicine and Hygiene 73, 491495.CrossRefGoogle ScholarPubMed
Kunchandy, E. and Rao, M. N. (1990). Oxygen radical scavenging activity of curcumin. International Journal of Pharmacognosy 58, 237–40.Google Scholar
Linkov, I., Satterstrom, F. K. and Corey, L. M. (2008). Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine: Nanotechnology, Biology, and Medicine 4, 167171.CrossRefGoogle Scholar
Machado, M., Sousa, M. C., Salgueiro, L. and Cavaleiro, C. (2010). Os óleos essenciais como agentes anti-parasitários. Revista de fitoterapia 10, 3544.Google Scholar
Mathews, V. V., Binu, P., Sauganth Paul, M. V., Abhilash, M., Alex Manju, R. and Harikumaran Nair, R. (2012). Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity. Asian Pacific Journal of Tropical Biomedicine 2, S706S711.CrossRefGoogle Scholar
McCord, J. M. and Fridovich, I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). Journal of Biology Chemistry 244, 60496055.CrossRefGoogle Scholar
Moon, D. O., Kim, M. O., Lee, H. J., Choi, Y. H., Park, Y. M., Heo, M. S. and Kim, G. Y. (2008). Curcumin attenuates ovalbumin-induced airway inflammation by regulating nitric oxide. Biochemical and Biophysical Research Communications 17, 275279.CrossRefGoogle Scholar
Nagajyothi, F., Zhao, D., Weiss, L. M. and Tanowitz, H. B. (2012). Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitology Research 110, 24912499.CrossRefGoogle ScholarPubMed
Nelson, D. P. and Kiesow, L. A. (1972). Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry 49, 474478.CrossRefGoogle ScholarPubMed
Nohl, H., Esterbauer, H. and Evans, C. R. (1996). Free radicals in the environment, medicine and toxicology: critical aspects and current highlights. Free Radical Biology and Medicine 20, 765766.Google Scholar
Nose, M., Koide, T., Ogihara, Y., Yabu, Y. and Ohta, N. (1998). Trypanocidal effects of curcumin in vitro . Biological and Pharmaceutical Bulletin 21, 643645.CrossRefGoogle ScholarPubMed
Omer, O. H., Mousa, H. M. and Al-Wabel, N. (2007). Study on the antioxidant status of rats experimentally infected with Trypanosoma evansi . Veterinary Parasitology 145, 142145.CrossRefGoogle Scholar
Pan, M. H., Huang, T. M. and Lin, J. K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism Disposition 27, 486494.Google ScholarPubMed
Pohlmann, A. R., Fonseca, F. N., Paese, K., Detoni, C. B., Coradini, K., Beck, R. C. R. and Guterres, S. S. (2013). Poly(ε-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opinion in Drug Delivery 10, 623638.CrossRefGoogle ScholarPubMed
Rajamanickam, V. and Muthuswamy, N. (2008). Effect of heavy metals induced toxicity on metabolic biomarkers in common carp (Cyprinus carpio L.). Maejo International Journal of Science and Technology 2, 192200.Google Scholar
Rodrigues, A., Fighera, R. A., Souza, T. M., Schild, A. L., Soares, M. P., Milano, J. and Barros, C. S. L. (2005). Outbreaks of trypanosomiasis in horses by Trypanosoma evansi in the state of Rio Grande do Sul, Brazil: epidemiological, clinical, hematological, and pathological aspects. Pesquisa Veterinária Brasileira 25, 239249.CrossRefGoogle Scholar
Sambaiah, K. and Srinivasan, K. (1989). Influence of spice principles on hepatic mixed function oxygenase system in rats. Indian Journal of Biochemistry and Biophysics 26, 254258.Google ScholarPubMed
Sandoval, G. L., Coppo, N. B., Negrette, M., Franciscato, C., Lopes, T. A., Pain, C. B., Rodrigues, A. and Teixeira, M. (1994). Alterações bioquímicas e histopatológicas de um cão e ratos infectados com Trypanosoma evansi . A Hora Veterinária 14, 5355.Google Scholar
Silva, R. A. M. S., Seidl, A., Ramirez, L. and Dávila, A. M. R. (2002). Trypanosoma evansi e Trypanosoma vivax: biologia, diagnóstico e controle. Embrapa Pantanal, Corumbá, 141 p.Google Scholar
Shahidi, F. and Wanasundara, P. K. J. (1992). Phenolic antioxidants. Critical Reviews in Food Science Nutrition 32, 67103.CrossRefGoogle ScholarPubMed
Singh, R. and Sharma, P. (2011). Hepatoprotective effect of curcumin on lindane-induced oxidative stress in male wistar rats. Toxicology International 18, 124129.Google ScholarPubMed
Subramanian, M., Sreejayan Rao, M. N., Devasagayam, T. P. and Singh, B. B. (1994). Diminution of singlet oxygen-induced damage by curcumin and related antioxidants. Mutation Research 311, 249255.CrossRefGoogle ScholarPubMed
Tatsch, E., Bochi, G. V., Pereira, R. D., Kober, H., Agertt, V. A., De Campo, M. M. A., Gomes, P., Duarte, M. M. M. F. and Moresco, R. N. (2011). A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clinical Biochemistry 44, 348350.CrossRefGoogle ScholarPubMed
Venturini, C. G., Jäger, E., Oliveira, C. P., Bernardi, A., Battastini, A. M. O., Guterres, S. S. and Pohlmann, A. R. (2011). Formulation of lipid core nanocapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects 375, 200208.CrossRefGoogle Scholar
Zanotto-Filho, A., Coradini, K., Braganhol, E., Schröder, R., de Oliveira, C. M., Simões-Pires, A., Battastini, A. M. O., Pohlmann, A. R., Guterres, S. S., Forcelini, C. M. and Beck, R. C. R. (2013). Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. European Journal of Pharmaceutics and Biopharmaceutics 83, 156167.CrossRefGoogle ScholarPubMed
Wolkmer, P., da Silva, C. B., Paim, F. C., Duarte, M. M. M. F., Palma, V. C. H. E., França, R. T., Felin, D. V., Siqueira, L. C., Lopes, S. T. A., Schetinger, M. R. C., Monteiro, S. G. and Mazzanti, C. M. (2013). Pre-treatment with curcumin modulates acetylcholinesterase activity and proinflammatory cytokines in rats infected with Trypanosoma evansi . Parasitology Interna 62, 144149.CrossRefGoogle ScholarPubMed