Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T14:28:48.018Z Has data issue: false hasContentIssue false

A transmission electron microscope study on the route of entry of triclabendazole into the liver fluke, Fasciola hepatica

Published online by Cambridge University Press:  24 December 2009

E. TONER
Affiliation:
Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
G. P. BRENNAN
Affiliation:
Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
F. McCONVERY
Affiliation:
Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
M. MEANEY
Affiliation:
Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
I. FAIRWEATHER*
Affiliation:
Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
*
*Corresponding author: Tel: +44-28-90972298. Fax: +44-28-90975877. E-mail: [email protected]

Summary

Uptake of triclabendazole by the liver fluke, Fasciola hepatica has been studied by experiments designed to block either oral uptake of drug, by use of ligatures, or trans-tegumental diffusion, by allowing the drug to bind to an excess of bovine serum albumin (BSA) in the medium. Changes to the tegumental system, musculature and gut were assessed using transmission electron microscopy. Flukes were incubated in vitro for 24 h in TCBZ.SO (15 μg/ml). Disruption to the tegument and muscle was similar in ligatured and non-ligatured flukes, suggesting that closing the oral route did not affect drug uptake. The ultrastructure of the gastrodermal cells remained unchanged. Non-ligatured flukes were also incubated for 24 h in vitro in TCBZ.SO (15 μg/ml) in the presence of red blood cells (RBCs). Oral uptake of blood was demonstrated, but gut ultrastructure remained normal, whereas the tegument was severely disrupted. In separate experiments, ligatured and non-ligatured flukes were incubated in TCBZ.SO (15 μg/ml) in the presence of BSA (30 mg/ml) for 24 h in vitro. There was a marked decrease in the degree of tegumental disruption observed compared with TCBZ.SO action alone; again, the gut remained normal. The findings support previous morphological and pharmacological studies indicating that trans-tegumental uptake of triclabendazole predominates in the liver fluke.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, L. I., Imeperiale, F. A., Sánchez, S. F., Murno, G. A. and Lanusse, C. E. (2000). Uptake of albendazole and albendazole sulphoxide by Haemonchus contortus and Fasciola hepatica in sheep. Veterinary Parasitology 94, 7589.CrossRefGoogle ScholarPubMed
Alvarez, L. I., Mottier, M. L. and Lanusse, C. E. (2004). Comparative assessment of the access of albendazole, fenbendazole and triclabendazole to Fasciola hepatica: effect of bile in the incubation medium. Parasitology 128, 7381.CrossRefGoogle ScholarPubMed
Alvarez, L. I., Mottier, M. L. and Lanusse, C. E. (2007). Drug transfer into target helminth parasites. Trends in Parasitology 23, 97–104.CrossRefGoogle ScholarPubMed
Alvarez, L. I., Mottier, M. L., Sánchez, S. F. and Lanusse, C. E. (2001). Ex vivo diffusion of albendazole and its sulfoxide metabolite into Ascaris suum and Fasciola hepatica. Parasitology Research 87, 929934.Google Scholar
Alvarez, L. I., Solana, H. D., Mottier, M. L., Virkel, G. L., Fairweather, I. and Lanusse, C. E. (2005). Altered drug influx/efflux and enhanced metabolic activity in triclabendazole-resistant liver flukes. Parasitology 131, 501510.CrossRefGoogle ScholarPubMed
Alvinerie, M., Perez, C., Sutra, J. F., Floc'h, R., Bayle, R. and Galtier, P. (1991 a). Disposition of [14C]-nitroxynil in sheep. Acta Veterinaria Scandinavica 87, 401403.Google Scholar
Alvinerie, M., Floc'h, R. and Galtier, P. (1991 b). Plasma protein binding of nitroxynil in several species. Journal of Veterinary Pharmacology and Therapeutics 14, 170173.CrossRefGoogle ScholarPubMed
Buchanan, J. F., Fairweather, I., Brennan, G. P., Trudgett, A. and Hoey, E. M. (2003). Surface and internal tegumental changes induced by treatment in vitro with the sulphoxide metabolite of albendazole (“Valbazen”). Parasitology 126, 141153.Google Scholar
Cross, H. F., Renz, A. and Trees, A. J. (1998). In vitro uptake of ivermectin by adult Onchocerca ochengi. Annals of Tropical Medicine and Parasitology 92, 711720.CrossRefGoogle ScholarPubMed
Fairweather, I. (2005). Triclabendazole: new skills to unravel an old(ish) enigma. Journal of Helminthology 79, 227234.CrossRefGoogle ScholarPubMed
Fairweather, I. (2009). Triclabendazole progress report, 2005–2009: an advancement of learning? Journal of Helminthology 83, 139150.CrossRefGoogle ScholarPubMed
Fairweather, I., Anderson, H. R. and Threadgold, L. T. (1986). Fasciola hepatica: tegumental changes induced in vitro by the deacetylated (amine) metabolite of diamphenethide. Experimental Parasitology 62, 336348.CrossRefGoogle ScholarPubMed
Fairweather, I., Threadgold, L. T. and Hanna, R. E. B. (1999). Development of Fasciola hepatica in the mammalian host. In Fasciolosis (ed. Dalton, J. P.),pp. 47–111. CAB International, Wallingford, Oxon, UK.Google Scholar
Halferty, L., Brennan, G. P., Hanna, R. E. B., Edgar, H. W., Meaney, M., McConville, M., Trudgett, A., Hoey, L. and Fairweather, I. (2008). Tegumental surface changes in juvenile Fasciola hepatica in response to treatment in vivo with triclabendazole. Veterinary Parasitology 155, 4958.CrossRefGoogle ScholarPubMed
Halferty, L., Brennan, G. P., Trudgett, A., Hoey, L. and Fairweather, I. (2009). Relative activity of triclabendazole metabolites against the liver fluke, Fasciola hepatica. Veterinary Parasitology 159, 126138.CrossRefGoogle ScholarPubMed
Haughey, S. J. (2008). A study on the route of entry of albendazole and its sulphoxide metabolite into the liver fluke, Fasciola hepatica. M.Phil. thesis, The Queen's University of Belfast, Northern Ireland, UK.Google Scholar
Hennessy, D. R., Lacey, E., Steel, J. W. and Prichard, R. K. (1987). The kinetics of triclabendazole disposition in sheep. Journal of Veterinary Pharmacology and Therapeutics 10, 6472.CrossRefGoogle ScholarPubMed
Ho, N. F. H., Geary, T. G., Barsuhn, C. L., Sims, S. M. and Thompson, D. P. (1990). Biophysical transport properties of the cuticle of Ascaris suum. Molecular and Biochemical Parasitology 41, 153165.CrossRefGoogle ScholarPubMed
McConville, M., Brennan, G. P., Flanagan, A., Edgar, H. W. J., McCoy, M., Castillo, R., Hernández-Campos, A. and Fairweather, I. (2008). Surface and internal tegumental changes in juvenile Fasciola hepatica following treatment in vivo with the experimental fasciolicide, compound alpha. Veterinary Parasitology 153, 5264.CrossRefGoogle ScholarPubMed
McConville, M., Brennan, G. P., Flanagan, A., Edgar, H. W. J., McCoy, M., Castillo, R., Hernández-Campos, A. and Fairweather, I. (2009). TEM ultrastructural changes to the tegumental system and the gastrodermal cells in mature flukes following in vivo treatment with the experimental fasciolicide, compound alpha. Parasitology 136, 665680.CrossRefGoogle Scholar
McConville, M., Brennan, G. P., McCoy, M., Castillo, R., Hernandez-Campos, A., Ibarra, F. and Fairweather, I. (2006). Adult triclabendazole-resistant Fasciola hepatica: surface and subsurface tegumental responses to in vitro treatment with the sulphoxide metabolite of the experimental fasciolicide compound alpha. Parasitology 133, 195208.CrossRefGoogle ScholarPubMed
McCoy, M. A., Fairweather, I., Brennan, G. P., Kenny, J. M., Ellison, S. and Forbes, A. B. (2005). The efficacy of nitroxynil and triclabendazole administered synchronously against juvenile triclabendazole-resistant Fasciola hepatica in sheep. Research in Veterinary Sciences 78 (Suppl A), 33.Google Scholar
McKinstry, B., Brennan, G. P., Halferty, L., Forbes, A. B. and Fairweather, I. (2007). Ultrastructural changes induced in the tegument and gut of Fasciola hepatica following in vivo and in vitro drug treatment with nitroxynil (Trodax). Parasitology Research 101, 929941.CrossRefGoogle ScholarPubMed
McKinstry, B., Fairweather, I., Brennan, G. P. and Forbes, A. B. (2003). Fasciola hepatica: tegumental surface alterations following treatment in vivo and in vitro with nitroxynil (Trodax). Parasitology Research 91, 251263.Google Scholar
McKinstry, B., Halferty, L., Brennan, G. P. and Fairweather, I. (2009). Morphological response of triclabendazole-resistant isolates of Fasciola hepatica to treatment in vitro with nitroxynil (Trodax). Parasitology Research 104, 645655.Google Scholar
Meaney, M., Allister, J., McKinstry, B., McLauglin, K., Brennan, G. P., Forbes, A. B. and Fairweather, I. (2007). Fasciola hepatica: ultrastructural effects of a combination of triclabendazole and clorsulon against mature fluke. Parasitology Research 100, 10911104.CrossRefGoogle ScholarPubMed
Meaney, M., Fairweather, I., Brennan, G. P. and Forbes, A. B. (2004). Transmission electron microscope study of the ultrastructural changes induced in the tegument and gut of Fasciola hepatica following in vivo drug treatment with clorsulon. Parasitology Research 92, 232241.Google Scholar
Meaney, M., Fairweather, I., Brennan, G. P., McDowell, L. S. L. and Forbes, A. B. (2003). Fasciola hepatica: effects of the fasciolicide clorsulon in vitro and in vivo on the tegumental surface, and a comparison of the effects on young- and old-mature flukes. Parasitology Research 91, 238250.Google Scholar
Meaney, M., Haughey, S., Brennan, G. P. and Fairweather, I. (2005 a). A scanning electron microscope study on the route of entry of clorsulon into the liver fluke, Fasciola hepatica. Parasitology Research 95, 117128 and 96, 189198.Google Scholar
Meaney, M., Haughey, S., Brennan, G. P. and Fairweather, I. (2005 b). Ultrastructural observations on oral ingestion and trans-tegumental uptake of clorsulon by the liver fluke, Fasciola hepatica. Parasitology Research 95, 201212.Google Scholar
Mestorino, N., Formentini, E. A., Lucas, M. F., Fernandez, C., Modamio, P., Hernández, E. M. and Errecalde, J. O. (2008). Pharmacokinetic disposition of triclabendazole in cattle and sheep; discrimination of the order and the rate of the absorption process of its active metabolite triclabendazole sulfoxide. Veterinary Research Comunications 32, 2133.CrossRefGoogle ScholarPubMed
Mohammed Ali, N. A. K., Bogan, J. A., Marriner, S. E. and Richards, R. J. (1986). Pharmacokinetics of triclabendazole alone or in combination with fenbendazole in sheep. Journal of Veterinary Pharmacology and Therapeutics 9, 442445.Google Scholar
Mottier, L., Alvarez, L., Ceballos, L. and Lanusse, C. (2006 a). Drug transport mechanisms in helminth parasites: passive diffusion of benzimidazole anthelmintics. Experimental Parasitology 113, 4957.CrossRefGoogle ScholarPubMed
Mottier, L., Alvarez, L., Fairweather, I. and Lanusse, C. (2006 b). Resistance-induced changes in triclabendazole transport in Fasciola hepatica: ivermectin reversal effect. Journal of Parasitology 92, 13551360.Google Scholar
Mottier, M. L., Alvarez, L. I., Pis, M. A. and Lanusse, C. E. (2003). Transtegumental diffusion of benzimidazole anthelmintics into Moniezia benedeni: correlation with their octanol-water partition coefficients. Experimental Parasitology 103, 17.Google Scholar
Mottier, L., Virkel, G., Solana, H., Alvarez, L., Salles, J. and Lanusse, C. (2004). Triclabendazole biotransformation and comparative diffusion of the parent drug and its oxidized metabolites into Fasciola hepatica. Xenobiotica 34, 10431057.CrossRefGoogle ScholarPubMed
O'Neill, J. F., Johnston, R. C., Halferty, L., Brennan, G. P., Keiser, J. and Fairweather, I. (2009). Adult triclabendazole-resistant Fasciola hepatica: morphological responses to in vivo treatment with artemether in the rat model. Journal of Helminthology 83, 151163.CrossRefGoogle Scholar
Pritchard, G. C., Forbes, A. C., Williams, D. J. L., Salimi-Bejestani, M. R. and Daniel, R. G. (2005). Emergence of fasciolosis in cattle in East Anglia. Veterinary Record 157, 578582.CrossRefGoogle ScholarPubMed
Robinson, G. and Threadgold, L. T. (1975). Electron microscope studies of Fasciola hepatica. XII. The fine structure of the gastrodermis. Experimental Parasitology 37, 2036.CrossRefGoogle ScholarPubMed
Robinson, M. W., Lawson, J., Trudgett, A., Hoey, E. M. and Fairweather, I. (2004). The comparative metabolism of triclabendazole sulphoxide by triclabendazole-susceptible and triclabendazole-resistant Fasciola hepatica. Parasitology Research 92, 205210.CrossRefGoogle ScholarPubMed
Robinson, M. W., Trudgett, A., Hoey, E. M. and Fairweather, I. (2002). Triclabendazole-resistant Fasciola hepatica: β-tubulin and response to in vitro treatment with triclabendazole. Parasitology 124, 325338.Google Scholar
Schulman, M. D., Valentino, D., Cifelli, S., Lang, R. and Ostlind, D. A. (1979). A pharmacokinetic basis for the efficacy of 4-amino-6-trichloroethenyl-1,3-benzenedisulfonamide against Fasciola hepatica in the rat. Journal of Parasitology 65, 555561.Google Scholar
Sims, S. M., Ho, N. F. H., Geary, T. G., Thomas, E. M., Day, J. S., Barsuhn, C. L. and Thompson, D. P. (1996). Influence of organic acid excretion on cuticle pH and drug absorption by Haemonchus contortus. International Journal for Parasitology 26, 2535.Google Scholar
Skuce, P. J., Anderson, H. R. and Fairweather, I. (1987). The interaction between the deacetylated (amine) metabolite of diamphenethide (DAMD) and cytochemically demonstrable Na+/K+-ATPase activity in the tegument of Fasciola hepatica. Parasitology Research 74, 161167.Google Scholar
Stitt, A. W. and Fairweather, I. (1994). The effect of the sulphoxide metabolite of triclabendazole (‘Fasinex’) on the tegument of mature and immature stages of the liver fluke, Fasciola hepatica. Parasitology 108, 555567.Google Scholar
Thompson, D. P. and Geary, T. G. (1995). The structure and function of helminth surfaces. In Biochemistry and Molecular Biology of Parasites (ed. Marr, J. and Muller, M.), pp. 203232. Academic Press, London, UK.CrossRefGoogle Scholar
Threadgold, L. T. (1963). The tegument and associated structures of Fasciola hepatica. Quarterly Journal of the Microscopical Society 104, 505512.Google Scholar
Threadgold, L. T. (1967). Electron-microscope studies of Fasciola hepatica. III. Further observations on the tegument and associated structures. Parasitology 57, 633637.CrossRefGoogle Scholar
Threadgold, L. T. and Brennan, G. P. (1978). Fasciola hepatica: basal infolds and associated vacuoles of the tegument. Experimental Parasitology 46, 300316.CrossRefGoogle ScholarPubMed
Toner, E., McConvery, F., Brennan, G. P., Meaney, M. and Fairweather, I. (2009). A scanning electron microscope study on the route of entry of triclabendazole into the liver fluke, Fasciola hepatica. Parasitology 136, 523535.Google Scholar
Virkel, G., Lifschitz, A., Sallovitz, J., Pis, A. and Lanusse, C. (2006). Assessment of the main metabolism pathways for the flukicidal compound triclabendazole in sheep. Journal of Veterinary Pharmacology and Therapeutics 29, 213223.Google Scholar
Xiao, S. H., Wu, Y. L., Tanner, M., Wu, W. M., Utzinger, J., Mei, J. Y., Scorneaux, B., Chollet, J. and Zhai, Z. (2003). Schistosoma japonicum: in vitro effects of artemether combined with haemin depend on cultivation media and appraisal of artemether products appearing in the media. Parasitology Research 89, 459466.Google Scholar