Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T12:23:05.072Z Has data issue: false hasContentIssue false

Transformation of Leishmania mexicana metacyclic promastigotes to amastigote-like forms mediated by binding of human C-reactive protein

Published online by Cambridge University Press:  07 August 2001

A. BEE
Affiliation:
Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
F. J. CULLEY
Affiliation:
Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
I. S. ALKHALIFE
Affiliation:
Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
K. B. BODMAN-SMITH
Affiliation:
Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
J. G. RAYNES
Affiliation:
Immunology Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
P. A. BATES
Affiliation:
Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK

Abstract

Infective metacyclic promastigote forms of Leishmania mexicana are introduced by the bite of sandfly vectors into their human hosts where they transform into the amastigote form. The kinetics of this process was examined in vitro in response to different combinations of temperature (26 °C or 32 °C), pH (7.2 or 5.5), and exposure to human serum. Little transformation occurred at 26 °C/pH 7.2, intermediate levels at 26 °C/pH 5.5 and 32 °C/ pH 7.2, and the greatest response at 32 °C/pH 5.5. Transformation was stimulated by exposure to normal human serum, but was markedly reduced when serum previously incubated at 56 °C for 1 h was used (complement heat-inactivated). This stimulatory effect was reproduced by exposure to a single purified component of human serum, C-reactive protein (CRP). Binding of CRP to the whole surface of L. mexicana metacyclic promastigotes, including the flagella, was demonstrated by an indirect fluorescent antibody test. The effect of purified CRP was dose dependent and occurred using normal serum concentrations. The stimulatory effect of whole serum was oblated by CRP depletion and restored by addition of purified CRP. The effects of cAMP analogues indicated that transformation could be mediated via an adenylate cyclase cascade.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BATES, P. A., ROBERTSON, C. D., TETLEY, L. & COOMBS, G. H. (1992). Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitology 105, 193202.CrossRefGoogle Scholar
BATES, P. A. (1993). Axenic culture of Leishmania amastigotes. Parasitology Today 9, 143146.CrossRefGoogle Scholar
BATES, P. A. & TETLEY, L. (1993). Leishmania mexicana: induction of metacyclogenesis by culture at acidic pH. Experimental Parasitology 76, 412423.CrossRefGoogle Scholar
BEVERLEY, S. M. & TURCO, S. J. (1998). Lipophosphoglycan (LPG) and the identification of virulence genes in the protozoan parasite Leishmania. Trends in Microbiology 6, 3540.CrossRefGoogle Scholar
BUTCHER, B. A., SHOME, K., ESTES, L. W., CHOAY, J., PETITOU, M., SIE, P. & GLEW, R. H. (1990). Leishmania donovani: Cell-surface heparin receptors of promastigotes are recruited from an internal pool after trypsinization. Experimental Parasitology 71, 4959.CrossRefGoogle Scholar
BUTCHER, B. A., SKLAR, L. A., SEAMER, L. C. & GLEW, R. H. (1992). Heparin enhances the interaction of infective Leishmania donovani promastigotes with mouse peritoneal macrophages. A fluorescence flow cytometric analysis. Journal of Immunology 148, 28792886.Google Scholar
CULLEY, F. J., HARRIS, R. A., KAYE, P. M., MCADAM, P. W. J. & RAYNES, J. G. (1996). C-reactive protein binds to a novel ligand on Leishmania donovani and increases uptake into human macrophages. Journal of Immunology 156, 46914696.Google Scholar
CULLEY, F. J., THOMSON, M. & RAYNES, J. G. (1997). C-reactive protein increases C3 deposition on Leishmania donovani promastigotes in human serum. Biochemical Society Transactions 25, 286S.CrossRefGoogle Scholar
CULLEY, F. J., BODMAN-SMITH, K. B., FERGUSON, M. A. J., NIKOLAEV, A. V., SHANTILAL, N. & RAYNES, J. G. (2000). C-reactive protein binds to phosphorylated carbohydrates. Glycobiology 10, 5965.CrossRefGoogle Scholar
DARLING, T. N. & BLUM, J. J. (1987). In vitro reversible transformation of Leishmania braziliensis panamensis between promastigote and ellipsoidal forms. Journal of Parasitology 34, 166168.Google Scholar
EPERON, S. & MCMAHON-PRATT, D. (1989). I. Extracellular cultivation and morphological characterization of amastigote-like forms of Leishmania panamensis and Leishmania braziliensis. Journal of Protozoology 36, 502510.Google Scholar
FRANKE, E. D., MCGREEVY, P. B., KATZ, S. P. & SACKS, D. L. (1985). Growth cycle-dependent generation of complement-resistant Leishmania promastigotes. Journal of Immunology 134, 27132718.Google Scholar
GONZALES-PERDOMO, M., ROMERO, P. & GOLDENBERG, S. (1988). Cyclic AMP and adenylate cyclase activators stimulate Trypanosoma cruzi differentiation. Experimental Parasitology 66, 205212.CrossRefGoogle Scholar
HUNTER, K. W., COOK, C. L. & HENSEN, S. A. (1982). Temperature-induced in vitro transformation of Leishmania mexicana. Acta Tropica 39, 143150.Google Scholar
ILG, T. (2000). Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO Journal 19, 19531962.CrossRefGoogle Scholar
ILG, T., MONTGOMERY, J., STIERHOF, Y.-D. & HANDMAN, E. (1999). Molecular cloning and characterization of a novel repeat-containing L. major gene, ppgl, that encodes a membrane-associated form of proteophosphoglycan with a putative glycosylphosphatidylinositol anchor. Journal of Biological Chemistry 274, 3141031420.Google Scholar
LOVELESS, W., O'SULLIVAN, G., RAYNES, J. G., YUEN, C.-T. & FEIZI, T. (1992). Human serum amyloid P is a multispecific adhesive protein whose ligands include 6-phosphorylated mannose and the 3-sulphated saccharides galactose, N-acetylgalactosamine and glucuronic acid. EMBO Journal 11, 813819.Google Scholar
NAULA, C. & SEEBECK, T. (2000). Cyclic AMP signaling in trypanosomatids. Parasitology Today 16, 3538.CrossRefGoogle Scholar
PAN, A. A. & PAN, S. C. (1986). Leishmania mexicana: comparative fine structure of amastigotes and promastigotes and in vivo. Experimental Parasitology 62, 254265.CrossRefGoogle Scholar
PAN, A. A., DUBOISE, S. M., EPERON, S., RIVAS, L., HODGKINSON, V., TRAUB-CSEKO, Y. & MCMAHON-PRATT, D. (1993). Developmental life cycle of Leishmania– cultivation and characterization of cultured extracellular amastigotes. Journal of Eukaryotic Microbiology 40, 213223.CrossRefGoogle Scholar
PARSONS, M. & RUBEN, L. (2000). Pathways involved in environmental sensing in trypanosomatids. Parasitology Today 16, 5662.CrossRefGoogle Scholar
RANGEL-ALDAO, R., ALLENDE, O., TRIANA, F., PIRAS, P., HENRIQUEA, D. & PIRAS, M. (1987). Possible role of cAMP in the differentiation of Trypanosoma cruzi. Molecular and Biochemical Parasitology 22, 3943.CrossRefGoogle Scholar
RAYNES, J. G., CURRY, A. & HARRIS, R. A. (1993). Binding of C-reactive protein to Leishmania. Biochemical Society Transactions 22, 3S.Google Scholar
ROLIN, S., PAINDOVOINE, P., HANOCQ-QUERTIER, J., HANOCQ, F., CLAES, Y., LE RAY, D., OVERATH, P. & PAYS, E. (1993). Transient adenylate cyclase activation accompanies differentiation of Trypanosoma brucei from bloodstream to procyclic forms. Molecular and Biochemical Parasitology 61, 115126.CrossRefGoogle Scholar
SANCHEZ, M. A., ZEOLI, D., KLAMOS, E. M., KAVANAUGH, M. P. & LANDFEAR, S. M. (1995). A family of putative receptor-adenylate cyclases from Leishmania donovani. Journal of Biological Chemistry 270, 1755117558.CrossRefGoogle Scholar
STINSON, S., SOMMER, J. R. & BLUM, J. J. (1989). Morphology of Leishmania braziliensis: changes induced during reversible heat-induced transformation from promastigote to an ellipsoidal form. Journal of Parasitology 75, 431440.CrossRefGoogle Scholar
ZAKAI, H. A., CHANCE, M. L. & BATES, P. A. (1998). In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology 116, 305309.Google Scholar
ZILBERSTEIN, D., BLUMENFELD, N., LIVEANU, V., GEPSTEIN, A. & JAFFE, C. L. (1991). Growth at an acidic pH induces an amastigote stage-specific protein in Leishmania promastigotes. Molecular and Biochemical Parasitology 45, 175178.CrossRefGoogle Scholar