Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T23:41:48.677Z Has data issue: false hasContentIssue false

The Toxoplasma gondii Plastid replication and Repair Enzyme Complex, PREX

Published online by Cambridge University Press:  30 April 2009

A. MUKHOPADHYAY
Affiliation:
Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK
C-Y. CHEN
Affiliation:
Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA
C. DOERIG
Affiliation:
INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK. INSERM U609, Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausnne, Switzerland
F. L. HENRIQUEZ
Affiliation:
Strathclyde Institute of Pharmacy and Biomedical Sciences, 27 Taylor Street, University of Strathclyde, Glasgow G4 0NR, UK
C. W. ROBERTS
Affiliation:
Strathclyde Institute of Pharmacy and Biomedical Sciences, 27 Taylor Street, University of Strathclyde, Glasgow G4 0NR, UK
M. P. BARRETT*
Affiliation:
Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK
*
*Corresponding author: Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.

Summary

A plastid-like organelle, the apicoplast, is essential to the majority of medically and veterinary important apicomplexan protozoa including Toxoplasma gondii and Plasmodium. The apicoplast contains multiple copies of a 35 kb genome, the replication of which is dependent upon nuclear-encoded proteins that are imported into the organelle. In P. falciparum an unusual multi-functional gene, pfprex, was previously identified and inferred to encode a protein with DNA primase, DNA helicase and DNA polymerase activities. Herein, we report the presence of a prex orthologue in T. gondii. The protein is predicted to have a bi-partite apicoplast targeting sequence similar to that demonstrated on the PfPREX polypeptide, capable of delivering marker proteins to the apicoplast. Unlike the P. falciparum gene that is devoid of introns, the T. gondii prex gene carries 19 introns, which are spliced to produce a contiguous mRNA. Bacterial expression of the polymerase domain reveals the protein to be active. Consistent with the reported absence of a plastid in Cryptosporidium species, in silico analysis of their genomes failed to demonstrate an orthologue of prex. These studies indicate that prex is conserved across the plastid-bearing apicomplexans and may play an important role in the replication of the plastid genome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahamsen, M. S., Templeton, T. J., Enomoto, S., Abrahante, J. E., Zhu, G., Lancto, C. A., Deng, M., Liu, C., Widmer, G., Tzipori, S., Buck, G. A., Xu, P., Bankier, A. T., Dear, P. H., Konfortov, B. A., Spriggs, H. F., Iyer, L., Anantharaman, V., Aravind, L. and Kapur, V. (2004). Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441445.CrossRefGoogle ScholarPubMed
Bendtsen, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004). Improved prediction of signal peptides: SignalP 3.0. Journal of Molecular Biology 340, 783795.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Bridges, D. J., Pitt, A. R., Hanrahan, O., Brennan, K., Voorheis, H. P., Herzyk, P., de Koning, H. P. and Burchmore, R. J. (2008). Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 8, 8399.CrossRefGoogle ScholarPubMed
Campbell, S. A., Richards, T. A., Mui, E. J., Samuel, B. U., Coggins, J. R., McLeod, R. and Roberts, C. W. (2004). A complete shikimate pathway in Toxoplasma gondii: an ancient eukaryotic innovation. International Journal for Parasitology 34, 513.Google Scholar
Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle ScholarPubMed
Dahl, E. L. and Rosenthal, P. J. (2008). Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends in Parasitology 24, 279284.CrossRefGoogle ScholarPubMed
Dar, M. A., Sharma, A., Mondal, N. and Dhar, S. K. (2007). Molecular cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase genes: unique intrinsic ATPase activity and ATP-independent dimerization of PfGyrB subunit. Eukaryotic Cell 6, 398412.CrossRefGoogle ScholarPubMed
Emanuelsson, O., Nielsen, H. and von Heijne, G. (1999). ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Science 8, 978984.CrossRefGoogle ScholarPubMed
Ferguson, D. J., Campbell, S. A., Henriquez, F. L., Phan, L., Mui, E., Richards, T. A., Muench, S. P., Allary, M., Lu, J. Z., Prigge, S. T., Tomley, F., Shirley, M. W., Rice, D. W., McLeod, R. and Roberts, C. W. (2007). Enzymes of type II fatty acid synthesis and apicoplast differentiation and division in Eimeria tenella. International Journal for Parasitology 37, 3351.CrossRefGoogle ScholarPubMed
Fichera, M. E. and Roos, D. S. (1997). A plastid organelle as a drug target in apicomplexan parasites. Nature, London 390, 407409.Google Scholar
Foth, B. J., Ralph, S. A., Tonkin, C. J., Struck, N. S., Fraunholz, M., Roos, D. S., Cowman, A. F. and McFadden, G. I. (2003). Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299, 705708.CrossRefGoogle ScholarPubMed
Gajria, B., Bahl, A., Brestelli, J., Dommer, J., Fischer, S., Gao, X., Heiges, M., Iodice, J., Kissinger, J. C., Mackey, A. J., Pinney, D. F., Roos, D. S., Stoeckert, C. J. Jr., Wang, H. and Brunk, B. P. (2008). ToxoDB: an integrated Toxoplasma gondii database resource, Nucleic Acids Research, 36, D553D556.CrossRefGoogle ScholarPubMed
Glick, E., Anderson, J. P. and Loeb, L. A. (2002). In vitro production and screening of DNA polymerase eta mutants for catalytic diversity. Biotechniques 33, 11361142, 1144.Google Scholar
Guo, A. Y., Zhu, Q. H., Chen, X. and Luo, J. C. (2007). [GSDS: a gene structure display server]. Yi. Chuan 29, 10231026.Google Scholar
Harb, O. S., Chatterjee, B., Fraunholz, M. J., Crawford, M. J., Nishi, M. and Roos, D. S. (2004). Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryotic Cell 3, 663674.CrossRefGoogle Scholar
He, C. Y., Striepen, B., Pletcher, C. H., Murray, J. M. and Roos, D. S. (2001). Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. Journal of Biological Chemistry 276, 2843628442.CrossRefGoogle ScholarPubMed
Hiller, K., Grote, A., Scheer, M., Munch, R. and Jahn, D. (2004). PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Research 32, W375W379.CrossRefGoogle ScholarPubMed
Kissinger, J. C., Gajria, B., Li, L., Paulsen, I. T. and Roos, D. S. (2003). ToxoDB: accessing the Toxoplasma gondii genome. Nucleic Acids Research 31, 234236.Google Scholar
Le Roch, K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D., De, L. V., Holder, A. A., Batalov, S., Carucci, D. J. and Winzeler, E. A. (2003). Discovery of gene function by expression profiling of the malaria parasite life cycle, Science 301, 15031508.CrossRefGoogle ScholarPubMed
McFadden, G. I., Reith, M. E., Munholland, J. and Lang-Unnasch, N. (1996). Plastid in human parasites. Nature, London 381, 482.CrossRefGoogle ScholarPubMed
McLeod, R., Muench, S. P., Rafferty, J. B., Kyle, D. E., Mui, E. J., Kirisits, M. J., Mack, D. G., Roberts, C. W., Samuel, B. U., Lyons, R. E., Dorris, M., Milhous, W. K. and Rice, D. W. (2001). Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. International Journal for Parasitology 31, 109113.Google Scholar
Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering Design and Selection 10, 16.CrossRefGoogle ScholarPubMed
Nielsen, H. and Krogh, A. (1998). Prediction of signal peptides and signal anchors by a hidden Markov model. Proceedings of the International Conference on Intelligent Systems for Molecular Biology 6, 122130.Google ScholarPubMed
Raghu Ram, E. V., Kumar, A., Biswas, S., Kumar, A., Chaubey, S., Siddiqi, M. I. and Habib, S. (2007). Nuclear gyrB encodes a functional subunit of the Plasmodium falciparum gyrase that is involved in apicoplast DNA replication. Molecular and Biochemical Parasitology 154, 3039.CrossRefGoogle ScholarPubMed
Ralph, S. A., D'Ombrain, M. C. and McFadden, G. I. (2001). The apicoplast as an antimalarial drug target. Drug Resistance Updates 4, 145151.CrossRefGoogle ScholarPubMed
Roberts, C. W. and Alexander, J. (1992). Studies on a murine model of congenital toxoplasmosis: vertical disease transmission only occurs in BALB/c mice infected for the first time during pregnancy. Parasitology 104, 1923.CrossRefGoogle ScholarPubMed
Roos, D. S. (1999). The apicoplast as a potential therapeutic target in Toxoplasma and other apicomplexan parasites: some additional thoughts. Parasitology Today 15, 41.CrossRefGoogle ScholarPubMed
Schaap, D., van Poppel, N. F. and Vermeulen, A. N. (2001). Intron invasion in protozoal nuclear encoded plastid genes. Molecular and Biochemical Parasitology 115, 119121.Google Scholar
Seow, F., Sato, S., Janssen, C. S., Riehle, M. O., Mukhopadhyay, A., Phillips, R. S., Wilson, R. J. and Barrett, M. P. (2005). The plastidic DNA replication enzyme complex of Plasmodium falciparum. Molecular and Biochemical Parasitology 141, 145153.Google Scholar
Soldati, D. (1999). The apicoplast as a potential therapeutic target in and other apicomplexan parasites. Parasitology Today 15, 57.CrossRefGoogle ScholarPubMed
Striepen, B., Crawford, M. J., Shaw, M. K., Tilney, L. G., Seeber, F. and Roos, D. S. (2000). The plastid of Toxoplasma gondii is divided by association with the centrosomes. Journal of Cell Biology 151, 14231434.CrossRefGoogle ScholarPubMed
Vollmer, M., Thomsen, N., Wiek, S. and Seeber, F. (2001). Apicomplexan parasites possess distinct nuclear-encoded, but apicoplast-localized, plant-type ferredoxin-NADP+ reductase and ferredoxin. Journal of Biological Chemistry 276, 54835490.CrossRefGoogle ScholarPubMed
Waller, R. F., Keeling, P. J., Donald, R. G., Striepen, B., Handman, E., Lang-Unnasch, N., Cowman, A. F., Besra, G. S., Roos, D. S. and McFadden, G. I. (1998). Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 95, 1235212357.CrossRefGoogle Scholar
Wilson, R. J., Williamson, D. H. and Preiser, P. (1994). Malaria and other Apicomplexans: the “plant” connection. Infectious Agents and Disease 3, 2937.Google ScholarPubMed
Xia, D., Sanderson, S. J., Jones, A. R., Prieto, J. H., Yates, J. R., Bromley, E., Tomley, F. M., Lal, K., Sinden, R. E., Brunk, B. P., Roos, D. S. and Wastling, J. M. (2008). The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation, Genome Biology 9, R116.Google Scholar
Xu, P., Widmer, G., Wang, Y., Ozaki, L. S., Alves, J. M., Serrano, M. G., Puiu, D., Manque, P., Akiyoshi, D., Mackey, A. J., Pearson, W. R., Dear, P. H., Bankier, A. T., Peterson, D. L., Abrahamsen, M. S., Kapur, V., Tzipori, S. and Buck, G. A. (2004). The genome of Cryptosporidium hominis. Nature, London 431, 11071112.Google Scholar
Zuegge, J., Ralph, S., Schmuker, M., McFadden, G. I. and Schneider, G. (2001). Deciphering apicoplast targeting signals–feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280, 1926.Google Scholar
Supplementary material: File

Supplementary Data: 1

Supplementary Data: 1

Download Supplementary Data: 1(File)
File 249.3 KB
Supplementary material: File

Supplementary Data: 2

Supplementary Data: 2

Download Supplementary Data: 2(File)
File 240.1 KB