Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T19:58:38.098Z Has data issue: false hasContentIssue false

Total intestinal absorption of glucose and l-methionine in broilers infected with Eimeria acervulina, E. mivati, E. maxima or E. brunetti

Published online by Cambridge University Press:  06 April 2009

M. D. Ruff
Affiliation:
United States Department of Agriculture Science and Education Administration, Agricultural Research, Animal Parasitology Institute, Beltsville, Maryland 20705
G. C. Wilkins
Affiliation:
United States Department of Agriculture Science and Education Administration, Agricultural Research, Animal Parasitology Institute, Beltsville, Maryland 20705

Summary

The in vitro absorption of glucose and l-methionine in the intestine of broiler chickens was measured 7, 14 and 21 days post-inoculation (p.i.) with sporulated oocysts of Eimeria acervulina, E. mivati, E. maxima or E. brunetti. The small intestine of each bird was divided into 8 regions of equal length and absorption was measured on 3 tissue disks of equal size from each region. The absorption rate of each substrate with each coccidial species was measured based on (1) an equal area from each region, (2) an equal weight from each region, (3) the total absorption in each region and (4) the total potential absorption in the intestine. Comparisons of absorption rate of equal areas in each intestinal region demonstrated that infected birds at 7 days p.i. absorbed significantly less substrate per unit area in the regions of maximum infection than uninfected controls. Malabsorption was less apparent when the weight of the region was used as the unit of measurement. Compensatory absorption was seen in some uninfected regions with E. acervulina. The total potential intestinal absorption at 7 days p.i. was reduced with E. mivati, E. maxima and E. brunetti but not with E. acervulina. At 14 days p.i., total l-methionine and glucose absorption in some regions of the intestine was significantly increased with E. acervulina but not with E. mivati, E. maxima or E. brunetti. No absorption differences were seen at 21 days p.i. with any species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brandborg, L. L. (1971). Structure and function of the small intestine in some parasitic diseases. American Journal of Clinical Nutrition 24, 124132.CrossRefGoogle Scholar
Brandborg, L. L., Goldberg, S. B. & Breidenbach, W. C. (1970). Human coccidiosis-a possible cause of malabsorption. The life cycle in small-bowel mucosal biopsies as a diagnostic feature. The New England Journal of Medicine 283, 1306–13.CrossRefGoogle Scholar
Crompton, D. W. T. (1976). Malfunctioning of the gut: parasitism. In Digestion in the Fowl, (ed. Boorman, K. N. and Freeman, B. M.), pp. 193245. Edinburgh: British Poultry Science Ltd.Google Scholar
French, J. M., Whitby, J. L. & Whitfield, A. G. W. (1964). Steatorrhea in a man infected with coccidiosis (Isospora belli). Gastroenterology 47, 642–8.CrossRefGoogle Scholar
Gardiner, J. L. & Wehr, E. E. (1950). Selecting experimental groups of chicks by weight. Proceedings of the Helminthological Society of Washington 17, 25–6.Google Scholar
Giese, W., Stoll, U., Dey-Hazra, A. & Enigk, K. (1971). Der Einfluss verschiedener Eimeria-arten auf Absorption und Stoffwechsel von [14C]-glucose bei Huhnerkuken. Experimental Parasitology 29, 440–50.CrossRefGoogle Scholar
Larbier, M., Yvoré, P. & Guillaume, J. (1974). Influence de la coccidiose duodenale sur l'utilisation de l'energie et des proteines alimentaires chez le poulet. Annales de Recherche Veterinaires 5, 179–88.Google Scholar
Noblet, G. P. & Turk, D. E. (1979). Effect of Eimeria species on the appearance of radioactivity in the blood of chicks fed radiolabeled glucose or 3-0-methyl-D-glucose. Poultry Science (in the Press).CrossRefGoogle Scholar
Preston-Mafham, R. A. & Sykes, A. H. (1967). Factors contributing to the weight loss during intestinal coccidiosis infections in the fowl. Proceedings of the Nutrition Society 26, 27–8.Google Scholar
Preston-Mafham, R. A. & Sykes, A. H. (1970). Changes in body weight and intestinal absorption during infections with Eimeria acervulina in the chicken. Parasitology 61, 417–24.CrossRefGoogle ScholarPubMed
Ruff, M. D. (1974). Reduced transport of methionine in the intestine of chickens infected with Eimeria necatrix. Journal of Parasitology 60, 838–43.CrossRefGoogle ScholarPubMed
Ruff, M. D. (1978). Malabsorption from the intestine of birds with coccidosis. In Avian Coccidiosis (ed. Long, P. L., Bootman, K. N. and Freeman, B. M.), pp. 281295. Edinburgh: British Poultry Science Ltd.Google Scholar
Ruff, M. D. & Fuller, H. L. (1975). Some mechanisms of reduction of carotenoid levels in chickens infected with Eimeria acervulina or E. tenella. Journal of Nutrition 105,1447–56.CrossRefGoogle ScholarPubMed
Ruff, M. D., Witlock, D. R. & Smith, R. R. (1976). Eimeria acervulina and E. tenella: effect on methionine absorption by the avian intestine. Experimental Parasitology 39, 244–51.CrossRefGoogle Scholar
Sharma, V. D. & Fernando, M. A. (1975). Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Canadian Journal of Comparative Medicine 39, 146–54.Google ScholarPubMed
Symons, L. E. A. (1960). Pathology of infestation of the rat with Nippostrongylus muris (Yokogawa). Australian Journal of Biological Sciences 13, 180–7.CrossRefGoogle Scholar
Symons, L. E. A. (1961). Pathology of infestation of the rat with Nippostrongylus muris (Yokogawa). Australian Journal of Biological Sciences 14, 165–71.CrossRefGoogle Scholar
Symons, L. E. A. (1971). Digestion, absorption and protein synthesis in intestinal nematode infections. In Pathology of Parasitic Diseases, (ed. Gaafar, S. M.) Lafayette, Indiana: Purdue University Studies.Google Scholar
Sykes, A. H. (1970). The effect of intestinal coccidiosis upon energy utilization in the chick. Proceedings of the Nutritional Society 29, 16A17A.Google ScholarPubMed
Sykes, A. H. & Walters, J. (1971). The digestion and absorption of carbohydrates in chicks infected with intestinal coccidiosis. Proceedings of the Nutrition Society 30, 29A.Google ScholarPubMed
Turk, D. E. (1972). Protozoan parasitic infection of the chick intestine and protein digestion and absorption. Journal of Nutrition 102, 1217–22.CrossRefGoogle ScholarPubMed
Turk, D. E. (1973). Calcium absorption during coccidial infections in chicks. Poultry Science 52, 854–7.CrossRefGoogle ScholarPubMed
Turk, D. E. (1974). Intestinal parasitism and nutrient absorption. Federation Proceedings 33, 106–11.Google ScholarPubMed
Turk, D. E. (1978). The effects of coccidiosis on intestinal function and gut microflora. In Avian Coccidiosis (ed. Long, P. L., Boorman, K. N. and Freeman, B. M.), pp. 227267. Edinburgh: British Poultry Science Ltd.Google Scholar
Turk, D. E. & Stephens, J. F. (1967). Upper intestinal tract infection produced by E. acervulina and absorption of 65Zn and 131I-labeled oleic acid. Journal of Nutrition 93, 161–5.CrossRefGoogle Scholar
Turk, D. E. & Stephens, J. F. (1969). Localized intestinal parasitic infections and the absorption of selected amino acids and protein. Federation Proceedings 28, 446.Google Scholar
Yvoré, P. & Mainguy, P. (1973). The effect of coccidiosis on the metabolism of the carotenoids. Roche Information Service.Google Scholar