Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T16:58:38.187Z Has data issue: false hasContentIssue false

Testosterone-induced changes in phosphatidylcholine molecular species composition of Plasmodium chabaudi-infected erythrocytes

Published online by Cambridge University Press:  06 April 2009

S. Fiebig
Affiliation:
Division of Parasitology, Institute of Zoology, Heinrich-Heine- University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
A. P. Simões
Affiliation:
C.B.L.E., Utrecht University, Utrecht, The Netherlands
F. Wunderlich
Affiliation:
Division of Parasitology, Institute of Zoology, Heinrich-Heine- University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
J. A. F. Op Den Kamp
Affiliation:
C.B.L.E., Utrecht University, Utrecht, The Netherlands

Summary

This study is concerned with the influence of testosterone on the phospholipid class and the phosphatidylcholine molecular species composition of various fractions obtained from the blood of Plasmodium chabaudi-infected mice. Blood plasma, infected erythrocytes, isolated parasites and erythrocyte membranes isolated from both non-infected and infected erythrocytes in the form of ghosts were analysed. In general, the phospholipid classes remained unaffected, while the phosphatidylcholine (PC) molecular species composition showed differences after testosterone treatment. In infected erythrocytes, there was a decrease in 16:0/20:4-PC and 18:0/20:4-PC and an increase in 16:0/18:2(16:0/20:3)-PC. The decrease of 16:0/20:4-PC was exclusively confined to parasites. The rise in 16:0/18:2(16:0/20: 3)-PC and the diminution of 18:0/20:4-PC occurred in the erythrocyte membrane of both infected ghosts and non-infected ghosts as well as in the blood plasma. It is suggested that these changes occur primarily in the plasma thereby influencing the erythrocyte membranes. The decrease in 16:0/20:4-PC supports the view of the independence of the parasite from the biosynthetic lipid pathways of its host cell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blank, M. L., Robinson, M., Fitzgerald, V. & Snyder, F. (1984). Novel quantitative method for determination of molecular species of phospholipids and diglycerides. Journal of Chromatography 298, 473–82.CrossRefGoogle ScholarPubMed
Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37, 911–17.CrossRefGoogle ScholarPubMed
Dahiya, R., Ahlawat, R. S. & Sharma, A. (1989). The glycosphingolipid composition and glycosyltransferase activities of the small intestinal mucosa of testosterone-treated rats. Biochemical Cell Biology 67, 42–7.CrossRefGoogle ScholarPubMed
Dahiya, R., Sharma, A. & Narayan, P. (1990). Effect of testosterone on the glycosphingolipid composition of the rat kidney. Biomedica Biochimica Acta 49, 1195–201.Google ScholarPubMed
Eden, S., Oscarsson, J., Jansson, J.-O. & Svanborg, A.(1987). The influence of gonadal steroids and the pituitary on the levels and composition of plasma phospholipids in the rat. Metabolism 56, 527–32.CrossRefGoogle Scholar
Glazer, G. (1992). Atherogenic effects of anabolic steroids on serum lipid levels. Archives of Internal Medicine 151, 1925–33.CrossRefGoogle Scholar
Grellier, P., Rigomier, D., Clavey, V., Fruchart, J.-C. & Schrevel, J. (1991). Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells. Journal of Cell Biology 112, 267–77.CrossRefGoogle ScholarPubMed
Morrison, W. R. & Smith, L. M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron-fluoride methanol. Journal of Lipid Research 5, 600–8.CrossRefGoogle ScholarPubMed
Recio, M. N., Del Hoyo, N. & Perez-Albarsanz, M. A. (1988). Androgenic control of acetate incorporation into membrane lipids in rat ventral prostate. Biochemistry International 16, 113.Google ScholarPubMed
Roelofsen, B. & Zwaal, R. F. A. (1976). The use of phospholipases in the determination of asymmetric lipid distribution in membranes. Methods in Membrane Biology 1, 147–77.CrossRefGoogle Scholar
Rose, H. G. & Oklander, M. (1965). Improved procedure for extraction of lipids from human erythrocyte. Journal of Lipid Research 6, 428–31.CrossRefGoogle Scholar
Rouser, G., Fleischer, S. & Yamamoto, A. (1969). Two-dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5, 494–6.CrossRefGoogle Scholar
Simões, P., Fiebig, S., Wunderlich, F., Vial, H., Roelofsen, B. & Op Den Kamp, J. A. F. (1993).Plasmodium chabaudi-parasitized erythrocytes: phosphatidylcholine species of parasites and host cell membranes. Molecular and Biochemical Parasitology 57, 345–8.CrossRefGoogle ScholarPubMed
Simões, P., Moll, G. N., Beaumelle, B., Vial, H. J., Roelofsen, B. & Op Den Kamp, J. A. F. (1990). Plasmodium knowlesiinduces alterations in phosphatidylcholine and phosphatidylethanolamine molecular species composition of parasitized monkey erythrocytes. Biochimica et Biophysica Acta 1022, 135–45.CrossRefGoogle ScholarPubMed
Simões, A. P., Roelofsen, B. & Op Den Kamp, J. A. F. (1992). Lipid compartmentalization in Plasmodiumspp. parasitized erythrocytes. Parasitology Today 8, 1821.CrossRefGoogle Scholar
Vial, H. J., Ancelin, M.-L., Philippot, J. R. & Thuet, M. J. (1990). Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells 16, 531–5.Google ScholarPubMed
Weyrich, S. W., Rejeski, W. J., Brubaker, P. H. & Parks, J. S. (1991). The effect of testosterone on lipids and eicosanoids in cynomolgus monkeys. Medicine and Science in Sports and Exercise 24, 333–8.Google Scholar
Willet, G. P. & Canfield, C. J. (1984). Plasmodium falciparum: continuous cultivation of erythrocyte stages in plasma-free culture medium. Experimental Parasitology 57, 7680.CrossRefGoogle ScholarPubMed
Wunderlich, F., Stuebig, H. & Koenigk, E. (1982). Development of Plasmodium chabaudi in mouse red blood cells: structural properties of the host and parasite membranes. Journal of Protozoology 29, 60–6.CrossRefGoogle ScholarPubMed
Wunderlich, F., Schillinger, G. & Helwig, M. (1985). Fractionation of Plasmodium chabaudi-infected erythrocytes into parasites and ghosts. Zeitschrift für Parasitenkunde 71, 545–51.CrossRefGoogle ScholarPubMed
Wunderlich, F., Helwig, M., Schillinger, G., Vial, H., Philippot, J. & Speth, V. (1987). Isolation and characterisation of parasites and host cell ghosts from erythrocytes infected with Plasmodium chabaudi. Molecular and Biochemical Parasitology 23, 103–15.CrossRefGoogle ScholarPubMed
Wunderlich, F., Helwig, M., Schillinger, G. & Speth, V. (1988). Cryptic disposition of antigenic parasite proteins in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Molecular and Biochemical Parasitology 30, 5566.CrossRefGoogle ScholarPubMed
Wunderlich, F., Fiebig, S., Vial, H. & Kleinig, H. (1991 a). Distinct lipid composition of parasite and host cell plasma membranes from Plasmodium chabaudi-infected erythrocytes. Molecular and Biochemical Parasitology 44, 271–8.CrossRefGoogle ScholarPubMed
Wunderlich, F., Marinovski, P., Benten, W. P. M., Schmitt-Wrede, H. P. & Mossmann, H. (1991 b). Testosterone and other gonadal factor(s) restrict the efficacy of genes controlling resistance to Plasmodium chabaudi malaria. Parasite Immunology 13, 357–67.CrossRefGoogle ScholarPubMed