Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T17:09:00.607Z Has data issue: false hasContentIssue false

Susceptibility of brook charr, Salvelinus fontinalis to the pathogenic haemoflagellate, Cryptobia salmositica, and the inheritance of innate resistance by progenies of resistant fish

Published online by Cambridge University Press:  06 April 2009

G. M. Forward
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
M. M. Ferguson
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
P. K. T. Woo
Affiliation:
Department of Zoology, University of Guelph, Guelph, Ontario, CanadaN1G 2W1

Summary

Eighty-seven of 175 laboratory raised F1 generation brook charr (Salvelinus fontinalis) were resistant to experimental Cryptobia salmositica infection. Susceptibility to the pathogen was not related to age nor to route of infection. Plasma of resistant charr lysed the parasite under in vitro conditions while those of susceptible fish did not. Sperm from 4 susceptible and 4 resistant male charr, from 8 F1 families, were used to fertilize eggs from 2 hatchery raised susceptible charr. Susceptibility of progenies (F2 families) was determined 4 weeks after inoculation of the parasite. All progenies (seven F2 families) of 4 susceptible males were susceptible to experimental infection and their plasma did not lyse the parasite. It was presumed that these susceptible progenies were homozygous recessive (rr), and that the resistant allele was dominant. All progenies (two F2 families) of 1 resistant male (presumed RR) and 2 susceptible females were all resistant to infection and their plasma lysed the parasite. The ratio of resistant to susceptible charr in 6 other F2 families from the other 3 resistant males (presumed Rr) and two susceptible females was about 1:1. The results suggest a single Mendelian locus which determines innate resistance to C. salmositica infection in brook charr and that it is possible to breed Cryptobia-resistant fish.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, G. A. A., Gray, G. D., Piper, L. R., Darker, J. S. F., Le Jambre, L. F. & Barger, I. A. (1987). The genetics of resistance and resilience to Haemonchus contortus infection in young merino sheep. International Journal for Parasitology 17, 1355–63.CrossRefGoogle ScholarPubMed
Ardelli, B. F. & Woo, P. T. K. (1995). Immune response of Cryptobia-susceptible and Cryptobia-resistant Salvelinus fontinalis to an Aeromonas salmonicida vaccine. Diseases of Aquatic Organisms (in the Press).CrossRefGoogle Scholar
Ardelli, B. F., Forward, G. M. & Woo, P. T. K. (1994). Brook charr (Salvelinus fontinalis) and cryptobiosis: A potential salmonid reservoir host for Cryptobia salmositica Katz, 1951. Journal of Fish Diseases 17, 567–77.CrossRefGoogle Scholar
Bakke, T. A., Jansen, P. A. & Hansen, L. P. (1990). Differences in the host resistance of Atlantic salmon, Salmo salar L., stocks to the monogenean Gyrodactylus salaris Malmberg, 1957. Journal of Fish Biology 37, 577–87.CrossRefGoogle Scholar
Beacham, T. D. & Evelyn, T. P. T. (1992). Population and genetic variation in resistance of chinook salmon to vibriosis, furnunculosis, and bacterial kidney disease. Aquatic Animal Health 4, 153–67.2.3.CO;2>CrossRefGoogle Scholar
Becker, C. D. & Katz, M. (1965 a). Transmission of the hemoflagellate Cryptobia salmositica, Katz, 1951, by a rhynchobdellid vector. Journal of Parasitology 51, 95–9.CrossRefGoogle ScholarPubMed
Becker, C. D. & Katz, M. (1965 b). Infections of the hemoflagellate, Cryptobia salmositica Katz, 1951, in freshwater teleosts of the Pacific coast. Transactions of the American Fishery Society 94, 327–33.CrossRefGoogle Scholar
Blackwell, J. M. (1988). Protozoan infections. In Genetics of Resistance to Bacterial and Parasitic Infection (ed. Wakelin, D. & Blackwell, J. M.), pp. 103151. London: Taylor and Francis.Google Scholar
Bower, S. M. & Margolis, L. (1984 a). Distribution of Cryptobia salmositica, a haemoflagellate of fishes, in British Columbia and the seasonal pattern of infection in a coastal river. Canadian Journal of Zoology 62, 2512–18.CrossRefGoogle Scholar
Bower, S. M. & Margolis, L. (1984 b). Detection of infection and susceptibility of different Pacific salmon stocks (Oncorhynchus spp.) to the haemoflagellate Cryptobia salmositica. Journal of Parasitology 70, 273–8.CrossRefGoogle Scholar
Bower, S. M. & Woo, P. T. K. (1977). Cryptobia catostomi: Incubation in plasma of susceptible and refractory fishes. Experimental Parasitology 43, 63–8.CrossRefGoogle Scholar
British Columbia Government Memorandum (1993). Eastern Brook Trout in British Columbia. Biological Services Unit, Fish Culture Station, B.C., Canada.Google Scholar
Cochran, W. G. & Cox, G. M. (1957). Experimental Designs. New York: John Wiley and Sons, Inc.Google Scholar
Dobson, C. & Jian-Ming, T. (1991). Genetic variation and host-parasite relations: Nematospiroides dubius in mice. Journal of Parasitology 77, 884–9.CrossRefGoogle ScholarPubMed
Fraser, J. M. (1989). Establishment of reproducing populations of brook trout after stocking of interstrain hybrids in precambrian shield lakes. North American Journal of Fisheries Management 9, 352–63.2.3.CO;2>CrossRefGoogle Scholar
Friedman, M. J. (1979). Oxidant damage mediates variant red cell resistance to malaria. Nature, London 280, 245–7.CrossRefGoogle ScholarPubMed
Gray, G. D. (1987). Genetic resistance to haemonchosis in sheep. Parasitology Today 3, 139–41.CrossRefGoogle ScholarPubMed
International Livestock Center For Africa (1979). Trypanotolerant Livestock in West and Central Africa, Monograph No. 2, ILCA, Addis Ababa.Google Scholar
Katz, M., Woodey, J. C., Decker, C. D., Woo, P. T. K. & Adams, J. R. (1966). Records of Cryptobia salmositica from sockeye salmon from the Fraser river drainage and from the state of Washington. Journal of Fishery Research Board (Canada) 23, 1965–6.CrossRefGoogle Scholar
Levine, R. F. & Mansfield, J. M. (1981). Genetics of resistance to the African trypanosomes. III. Variant specific antibodies of H-2-compatible resistant and susceptible mice. Journal of Immunology 133, 1564–9.CrossRefGoogle Scholar
Li, S. & Woo, P. T. K. (1991). Anorexia reduces the severity of cryptobiosis in Oncorhynchus mykiss. Journal of Parasitology 77, 467–71.CrossRefGoogle ScholarPubMed
Li, S. & Woo, P. T. K. (1995). Efficacy of a live Cryptobia salmositica vaccine, and the mechanism of protection in vaccinated Oncorhynchus mykiss (Walbaum) against cryptobiosis. Veterinary Immunology and Immunopathology (in the Press).CrossRefGoogle Scholar
Miller, L. H. (1977). Hypothesis on the mechanism of erythrocyte invasion by malaria merozoites. Bulletin of the World Health Organization 55, 157–62.Google ScholarPubMed
Miller, L. H., Mason, S. J., Dvorak, J. A., McGinniss, M. H. & Rothman, I. K. (1975). Erythrocyte receptors for (Plasmodium knowlesi) malaria: duffy blood group determinants. Science 189, 561–3.CrossRefGoogle ScholarPubMed
Morrison, W. I., Roelants, G. E., Mayor-Withey, K. S. & Murray, M. (1978). Susceptibility of inbred strains of mice to Trypanosoma congolense: Correlation with changes in spleen lymphocyte populations. Clinical Experimental Immunology 32, 2540.Google ScholarPubMed
Nilsson, J. (1992). Genetic variation in resistance of arctic char to fungal infection. Aquatic Animal Health 4, 126–8.2.3.CO;2>CrossRefGoogle Scholar
Otesile, E. B., Lee, M. & Tabel, H. (1991). Plasma levels of proteins of the alternate pathway in inbred mice that differ in resistance to Trypanosoma congolense infections. Journal of Parasitology 77, 958–64.CrossRefGoogle ScholarPubMed
Pinder, M., Fumoux, F. & Roelants, G. E. (1985). Immune mechanisms and genetic control of natural resistance to Trypanosoma congolense. Progress in Leukocyte Biology 3, 495500.Google Scholar
Pasvol, G. & Wilson, R. J. M. (1982). The interaction of malaria parasites with red blood cells. British Medical Bulletin 38, 133–40.CrossRefGoogle ScholarPubMed
Pasvol, G., Weatherall, D. J. & Wilson, R. J. M. (1977). Effects of foetal haemoglobin on susceptibility of red cells to Plasmodium falciparum. Nature, London 270, 171–3.CrossRefGoogle ScholarPubMed
Pasvol, G., Weatherall, D. J. & Wilson, R. J. M. (1978). Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature, London 274, 701–3.CrossRefGoogle ScholarPubMed
Sasasuki, T., Nishimura, Y., Muto, M. & Ohta, N. (1983). HLA-linked genes controlling immune recognition and disease susceptibility. Immunological Review 70, 5075.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics. New York: McGraw-Hill Book Company.Google Scholar
Thomas, P. T. & Woo, P. T. K. (1990). Dietary modulation of humoral immune response and anaemia in rainbow trout, Oncorhynchus mykiss (Walbaum), infected with Cryptobia salmositica Katz, 1951. Journal of Fish Diseases 13, 435–46.CrossRefGoogle Scholar
Thomas, P. T. & Woo, P. T. K. (1992). Anorexia in Oncorhynchus mykiss infected with Cryptobia salmositica (Sarcomastigophora: Kinetoplastida): Its onset and contribution to the immunodepression. Journal of Fish Diseases 15, 443–7.CrossRefGoogle Scholar
Wales, J. H. & Wolf, K. (1955). Three protozoan diseases of trout in California. California Fish and Game 41, 183–7.Google Scholar
Wakelin, D. (1992). Genetics variation in resistance to parasitic infection: experimental approaches and practical applications. Research in Veterinary Science 53, 139–47.CrossRefGoogle ScholarPubMed
Wehnert, S. D. & Woo, P. T. K. (1980). In vivo and in vitro studies on the host specificity of Trypanoplasma salmositica. Journal in Wildlife Disease 16, 183–7.CrossRefGoogle ScholarPubMed
Woo, P. T. K. (1978). The division process of Cryptobia salmositica in experimentally infected rainbow trout (Salmo gairdneri). Canadian Journal of Zoology 56, 1514–18.CrossRefGoogle ScholarPubMed
Woo, P. T. K. (1979). Trypanoplasma salmositica: Experimental infections in rainbow trout Salmo gairdneri. Experimental Parasitology 47, 3648.CrossRefGoogle ScholarPubMed
Woo, P. T. K. (1987). Cryptobia and cryptobiosis in fishes. In Advances in Parasitology, Vol. 26 (ed. Baker, J. R. & Muller, R.), pp. 199237. London: Academic Press.Google Scholar
Woo, P. T. K. (1991). Mammalian trypanosomiasis and piscine cryptobiosis in Canada and the United States. Bulletin of the Society of Vector Ecology 16, 2542.Google Scholar
Woo, P. T. K. (1994). Flagellate parasites of fish. In Parasitic Protozoa, Vol. 8 (ed. Kreier, J. P.), pp. 180. San Diego: Academic Press.Google Scholar
Woo, P. T. K. & Wehnert, S. D. (1983). Direct transmission of a hemoflagellate, Cryptobia salmositica (Kinetoplastida: Bodonina) between rainbow trout under laboratory conditions. Journal of Protozoology 30, 334–7.CrossRefGoogle Scholar
Woo, P. T. K. & Li, S. (1990). In vitro attenuation of Cryptobia salmositica and its use as a live vaccine against cryptobiosis in Oncorhynchus mykiss. Journal of Parasitology 76, 752–5.CrossRefGoogle ScholarPubMed